Euclid preparation

Author:

van Mierlo S. E.,Caputi K. I.,Ashby M.,Atek H.,Bolzonella M.,Bowler R. A. A.,Brammer G.,Conselice C. J.,Cuby J.,Dayal P.,Díaz-Sánchez A.,Finkelstein S. L.,Hoekstra H.,Humphrey A.,Ilbert O.,McCracken H. J.,Milvang-Jensen B.,Oesch P. A.,Pello R.,Rodighiero G.,Schirmer M.,Toft S.,Weaver J. R.,Wilkins S. M.,Willott C. J.,Zamorani G.,Amara A.,Auricchio N.,Baldi M.,Bender R.,Bodendorf C.,Bonino D.,Branchini E.,Brescia M.,Brinchmann J.,Camera S.,Capobianco V.,Carbone C.,Carretero J.,Castellano M.,Cavuoti S.,Cimatti A.,Cledassou R.,Congedo G.,Conversi L.,Copin Y.,Corcione L.,Courbin F.,Da Silva A.,Degaudenzi H.,Douspis M.,Dubath F.,Dupac X.,Dusini S.,Farrens S.,Ferriol S.,Frailis M.,Franceschi E.,Franzetti P.,Fumana M.,Galeotta S.,Garilli B.,Gillard W.,Gillis B.,Giocoli C.,Grazian A.,Grupp F.,Haugan S. V. H.,Holmes W.,Hormuth F.,Hornstrup A.,Jahnke K.,Kümmel M.,Kiessling A.,Kilbinger M.,Kitching T.,Kohley R.,Kunz M.,Kurki-Suonio H.,Laureijs R.,Ligori S.,Lilje P. B.,Lloro I.,Maiorano E.,Mansutti O.,Marggraf O.,Markovic K.,Marulli F.,Massey R.,Maurogordato S.,Medinaceli E.,Meneghetti M.,Merlin E.,Meylan G.,Moresco M.,Moscardini L.,Munari E.,Niemi S. M.,Padilla C.,Paltani S.,Pasian F.,Pedersen K.,Pettorino V.,Pires S.,Poncet M.,Popa L.,Pozzetti L.,Raison F.,Renzi A.,Rhodes J.,Riccio G.,Romelli E.,Rossetti E.,Saglia R.,Sapone D.,Sartoris B.,Schneider P.,Secroun A.,Sirignano C.,Sirri G.,Stanco L.,Starck J.-L.,Surace C.,Tallada-Crespí P.,Taylor A. N.,Tereno I.,Toledo-Moreo R.,Torradeflot F.,Tutusaus I.,Valentijn E. A.,Valenziano L.,Vassallo T.,Wang Y.,Zacchei A.,Zoubian J.,Andreon S.,Bardelli S.,Boucaud A.,Graciá-Carpio J.,Maino D.,Mauri N.,Mei S.,Sureau F.,Zucca E.,Aussel H.,Baccigalupi C.,Balaguera-Antolínez A.,Biviano A.,Blanchard A.,Borgani S.,Bozzo E.,Burigana C.,Cabanac R.,Calura F.,Cappi A.,Carvalho C. S.,Casas S.,Castignani G.,Colodro-Conde C.,Cooray A. R.,Coupon J.,Courtois H. M.,Crocce M.,Cucciati O.,Davini S.,Dole H.,Escartin J. A.,Escoffier S.,Fabricius M.,Farina M.,Ganga K.,García-Bellido J.,George K.,Giacomini F.,Gozaliasl G.,Gwyn S.,Hook I.,Huertas-Company M.,Kansal V.,Kashlinsky A.,Keihanen E.,Kirkpatrick C. C.,Lindholm V.,Maoli R.,Martinelli M.,Martinet N.,Maturi M.,Metcalf R. B.,Monaco P.,Morgante G.,Nucita A. A.,Patrizii L.,Peel A.,Pollack J.,Popa V.,Porciani C.,Potter D.,Reimberg P.,Sánchez A. G.,Scottez V.,Sefusatti E.,Stadel J.,Teyssier R.,Valiviita J.,Viel M.

Abstract

Context. The Euclid mission is expected to discover thousands of z > 6 galaxies in three deep fields, which together will cover a ∼50 deg2 area. However, the limited number of Euclid bands (four) and the low availability of ancillary data could make the identification of z > 6 galaxies challenging. Aims. In this work we assess the degree of contamination by intermediate-redshift galaxies (z = 1–5.8) expected for z > 6 galaxies within the Euclid Deep Survey. Methods. This study is based on ∼176 000 real galaxies at z = 1–8 in a ∼0.7 deg2 area selected from the UltraVISTA ultra-deep survey and ∼96 000 mock galaxies with 25.3 ≤ H < 27.0, which altogether cover the range of magnitudes to be probed in the Euclid Deep Survey. We simulate Euclid and ancillary photometry from fiducial 28-band photometry and fit spectral energy distributions to various combinations of these simulated data. Results. We demonstrate that identifying z > 6 galaxies with Euclid data alone will be very effective, with a z > 6 recovery of 91% (88%) for bright (faint) galaxies. For the UltraVISTA-like bright sample, the percentage of z = 1–5.8 contaminants amongst apparent z > 6 galaxies as observed with Euclid alone is 18%, which is reduced to 4% (13%) by including ultra-deep Rubin (Spitzer) photometry. Conversely, for the faint mock sample, the contamination fraction with Euclid alone is considerably higher at 39%, and minimised to 7% when including ultra-deep Rubin data. For UltraVISTA-like bright galaxies, we find that Euclid (IE − YE) > 2.8 and (YE − JE) < 1.4 colour criteria can separate contaminants from true z > 6 galaxies, although these are applicable to only 54% of the contaminants as many have unconstrained (IE − YE) colours. In the best scenario, these cuts reduce the contamination fraction to 1% whilst preserving 81% of the fiducial z > 6 sample. For the faint mock sample, colour cuts are infeasible; we find instead that a 5σ detection threshold requirement in at least one of the Euclid near-infrared bands reduces the contamination fraction to 25%.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3