Dust ring and gap formation by gas flow induced by low-mass planets embedded in protoplanetary disks

Author:

Kuwahara Ayumu,Kurokawa Hiroyuki,Tanigawa Takayuki,Ida Shigeru

Abstract

Context. Recent high-spatial-resolution observations have revealed dust substructures in protoplanetary disks such as rings and gaps, which do not always correlate with gas. Because radial gas flow induced by low-mass, non-gas-gap-opening planets could affect the radial drift of dust, it potentially forms these dust substructures in disks. Aims. We investigate the potential of gas flow induced by low-mass planets to sculpt the rings and gaps in the dust profiles. Methods. We first perform three-dimensional hydrodynamical simulations, which resolve the local gas flow past a planet. We then calculate the trajectories of dust influenced by the planet-induced gas flow. Finally, we compute the steady-state dust surface density by incorporating the influences of the planet-induced gas flow into a one-dimensional dust advection-diffusion model. Results. The outflow of the gas toward the outside of the planetary orbit inhibits the radial drift of dust, leading to dust accumulation (the dust ring). The outflow toward the inside of the planetary orbit enhances the inward drift of dust, causing dust depletion around the planetary orbit (the dust gap). Under weak turbulence (αdiff ≲ 10−4, where αdiff is the turbulence strength parameter), the gas flow induced by the planet with ≳1M (Earth mass) generates the dust ring and gap in the distribution of small dust grains (≲1 cm) with a radial extent of ~1–10 times the gas scale height around the planetary orbit without creating a gas gap and pressure bump. Conclusions. The gas flow induced by low-mass, non-gas-gap-opening planets can be considered a possible origin of the observed dust substructures in disks. Our results may be helpful in explaining the disks whose dust substructures were found not to correlate with those of the gas.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3