Quenching by gas compression and consumption

Author:

Man Allison W. S.ORCID,Lehnert Matthew D.ORCID,Vernet Joël D. R.,De Breuck CarlosORCID,Falkendal Theresa

Abstract

The objective of this work is to study how active galactic nuclei (AGN) influence star formation in host galaxies. We present a detailed investigation of the star-formation history and conditions of a z = 2.57 massive radio galaxy based on VLT/X-shooter and ALMA observations. The deep rest-frame ultraviolet spectrum contains photospheric absorption lines and wind features indicating the presence of OB-type stars. The most significantly detected photospheric features are used to characterize the recent star formation: neither instantaneous nor continuous star-formation history is consistent with the relative strength of the Si IIλ1485 and S Vλ1502 absorption. Rather, at least two bursts of star formation took place in the recent past, at 6+1-2 Myr and ≳20 Myr ago, respectively. We deduce a molecular H2 gas mass of (3.9 ± 1.0) × 1010M based on ALMA observations of the [C I] 3P23P1 emission. The molecular gas mass is only 13% of its stellar mass. Combined with its high star-formation rate of (1020-170+190 M yr-1, this implies a high star-formation efficiency of (26 ± 8) Gyr−1 and a short depletion time of (38 ± 12) Myr. We attribute the efficient star formation to compressive gas motions in order to explain the modest velocity dispersions (⩽55 km s−1) of the photospheric lines and of the star-forming gas traced by [C I]. Because of the likely very young age of the radio source, our findings suggest that vigorous star formation consumes much of the gas and works in concert with the AGN to remove any residual molecular gas, and eventually quenching star formation in massive galaxies.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Widespread AGN feedback in a forming brightest cluster galaxy at z = 4.1, unveiled by JWST;Monthly Notices of the Royal Astronomical Society;2024-06-05

2. B/PS bulges and barlenses from a kinematic viewpoint – I;Monthly Notices of the Royal Astronomical Society;2023-09-05

3. Faint [C i](1–0) emission in z ∼ 3.5 radio galaxies;Monthly Notices of the Royal Astronomical Society;2023-09-02

4. Characterizing CO Emitters in the SSA22-AzTEC26 Field;The Astrophysical Journal;2023-08-01

5. The Dragonfly Galaxy. III. Jet Brightening of a High-redshift Radio Source Caught in a Violent Merger of Disk Galaxies;The Astrophysical Journal;2023-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3