Exoplanet atmospheres with GIANO

Author:

Guilluy G.,Sozzetti A.,Brogi M.,Bonomo A. S.,Giacobbe P.,Claudi R.,Benatti S.

Abstract

Context. The study of exoplanetary atmospheres is key to understanding the differences between their physical, chemical, and dynamical processes. Until now, the bulk of atmospheric characterization analyses have been conducted on transiting planets. On a number of sufficiently bright targets, high-resolution spectroscopy (HRS) has also been successfully tested for nontransiting planets mainly by using spectrographs mounted on 8 and 10 m class ground-based telescopes. Aims. The aim of this analysis is to study the dayside of the nontransiting planet HD 102195b using the GIANO spectrograph mounted at the Telescopio Nazionale Galileo (TNG), and thereby demonstrate the feasibility of atmospheric characterization measurements. In particular, we wish to demonstrate the possibility of molecular detection with the HRS technique for nontransiting planets using 4 m class telescopes. Methods. Our data-analysis technique exploits the fact that the Doppler-shifted planetary signal changes on the order of many kilometers per second during the observations, in contrast with the telluric absorption which is stationary in wavelength. This allows us to effectively remove the contamination from telluric lines in the GIANO spectra while preserving the features of the planetary spectrum. The emission signal from the atmosphere of HD 102195b is then extracted by cross-correlating the residual GIANO spectra with models of the planetary atmosphere. Results. We detect molecular absorption from water vapor at the 4.4σ level of statistical significance. We also find convincing evidence for the presence of methane, which is detected at the 4.1σ level. This is the first detection of methane obtained with the HRS technique. The two molecules are detected with a combined significance of 5.3σ, at a semi-amplitude of the planet radial velocity KP = 128 ± 6 km s−1. We estimate a true planet mass of MP = 0.46 ± 0.03 MJ and constrain the orbital inclination in the range 72.5° < i < 84.79° (1σ). Our analysis indicates a noninverted atmosphere for HD 102195b. This is expected given the relatively low temperature of the planet, inefficient to keep TiO/VO in gas phase. Moreover, a comparison with theoretical model expectations corroborates our detection of methane, and a cursory confrontation with chemical model predictions published in the literature suggests that the detected methane and water signatures could be consistent with a low C/O ratio for HD 102195b. Finally, as HD 102195 is one to three magnitudes fainter in the K-band than the nontransiting systems studied until now with 8 m telescopes, our study opens up the possibility for atmospheric characterization of a larger sample of exoplanets.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference57 articles.

1. Allard F., Homeier D., & Freytag B. 2011, in 16th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, eds. Johns-Krull C., Browning M. K., & West A. A., ASP Conf. Ser., 448, 91

2. Multiple water band detections in the CARMENES near-infrared transmission spectrum of HD 189733 b

3. SPIRou: the near-infrared spectropolarimeter/high-precision velocimeter for the Canada-France-Hawaii telescope

4. Birkby J. L. 2018, ArXiv e-prints [arXiv:1806.04617]

5. Discovery of Water at High Spectral Resolution in the Atmosphere of 51 Peg b

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3