Surface evolution of the Anhur region on comet 67P/Churyumov-Gerasimenko from high-resolution OSIRIS images

Author:

Fornasier S.,Feller C.,Hasselmann P. H.,Barucci M. A.,Sunshine J.,Vincent J.-B.,Shi X.,Sierks H.,Naletto G.,Lamy P. L.,Rodrigo R.,Koschny D.,Davidsson B.,Bertaux J.-L.,Bertini I.,Bodewits D.,Cremonese G.,Da Deppo V.,Debei S.,De Cecco M.,Deller J.,Ferrari S.,Fulle M.,Gutierrez P. J.,Güttler C.,Ip W.-H.,Jorda L.,Keller H. U.,Lara M. L.,Lazzarin M.,Lopez Moreno J. J.,Lucchetti A.,Marzari F.,Mottola S.,Pajola M.,Toth I.,Tubiana C.

Abstract

Context. The southern hemisphere of comet 67P/Churyumov-Gerasimenko (67P) became observable by the Rosetta mission in March 2015, a few months before cometary southern vernal equinox. The Anhur region in the southern part of the comet’s larger lobe was found to be highly eroded, enriched in volatiles, and highly active. Aims. We analyze high-resolution images of the Anhur region pre- and post-perihelion acquired by the OSIRIS imaging system on board the Rosetta mission. The Narrow Angle Camera is particularly useful for studying the evolution in Anhur in terms of morphological changes and color variations. Methods. Radiance factor images processed by the OSIRIS pipeline were coregistered, reprojected onto the 3D shape model of the comet, and corrected for the illumination conditions. Results. We find a number of morphological changes in the Anhur region that are related to formation of new scarps; removal of dust coatings; localized resurfacing in some areas, including boulders displacements; and vanishing structures, which implies localized mass loss that we estimate to be higher than 50 million kg. The strongest changes took place in and nearby the Anhur canyon-like structure, where significant dust cover was removed, an entire structure vanished, and many boulders were rearranged. All such changes are potentially associated with one of the most intense outbursts registered by Rosetta during its observations, which occurred one day before perihelion passage. Moreover, in the niche at the foot of a new observed scarp, we also see evidence of water ice exposure that persisted for at least six months. The abundance of water ice, evaluated from a linear mixing model, is relatively high (>20%). Our results confirm that the Anhur region is volatile-rich and probably is the area on 67P with the most pristine exposures near perihelion.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3