CO2-driven surface changes in the Hapi region on Comet 67P/Churyumov–Gerasimenko

Author:

Davidsson Björn J R1ORCID,Schloerb F Peter2,Fornasier Sonia34ORCID,Oklay Nilda5,Gutiérrez Pedro J6ORCID,Buratti Bonnie J7,Chmielewski Artur B8,Gulkis Samuel9,Hofstadter Mark D10,Keller H Uwe1112,Sierks Holger13,Güttler Carsten13ORCID,Küppers Michael14,Rickman Hans1516,Choukroun Mathieu7,Lee Seungwon17,Lellouch Emmanuel3,Lethuillier Anthony11ORCID,Da Deppo Vania18,Groussin Olivier19,Kührt Ekkehard20,Thomas Nicolas21,Tubiana Cecilia22ORCID,El-Maarry M Ramy23,La Forgia Fiorangela24ORCID,Mottola Stefano12,Pajola Maurizio25

Affiliation:

1. Jet Propulsion Laboratory, California Institute of Technology , M/S 183-401, 4800 Oak Grove Drive, Pasadena, CA 91109, USA

2. University of Massachusetts, Department of Astronomy , LGRT–B 847 710 North Pleasant Street, Amherst, MA 01003-9305, USA

3. LESIA, Université Paris Cité, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université , 5 place Jules Janssen, F-92195 Meudon, France

4. Institut Universitaire de France (IUF) , 1 rue Descartes, F-75231 PARIS CEDEX 05, France

5. Independent researcher , Berlin, Germany

6. Instituto de Astrofísica de Andalucía (CSIC) , Glorieta de la Astronomía s/n. E-18080 Granada, Spain

7. Jet Propulsion Laboratory, California Institute of Technology , M/S 183-601, 4800 Oak Grove Drive, Pasadena, CA 91109, USA

8. Jet Propulsion Laboratory, California Institute of Technology , M/S 321-655, 4800 Oak Grove Drive, Pasadena, CA 91109, USA

9. 200 W Highland Dr. , Unit 104, Seattle, WA 98119, USA

10. Jet Propulsion Laboratory, California Institute of Technology , M/S 183-301, 4800 Oak Grove Drive, Pasadena, CA 91109, USA

11. Institut für Geophysik und extraterrestrische Physik (IGeP), Technische Universität Braunschweig , Mendelssohnstr. 3, D-38106 Braunschweig, Germany

12. Deutsches Zentrum für Luft– und Raumfahrt (DLR), Institut für Planetenforschung , Asteroiden und Kometen, Rutherfordstr. 2, D-12489 Berlin, Germany

13. Max Planck Institute for Solar System Research , Justus-von-Liebig-Weg 3, D-37077 Göttingen, Germany

14. European Space Agency (ESA), European Space Astronomy Centre (ESAC) , Camino Bajo del Castillo s/n, E-28692 Villanueva de la Cañada, Madrid, Spain

15. Centrum Badań Kosmicznych Polskiej Akademii Nauk , Bartycka 18A, PL-00716 Warszawa, Poland

16. Department of Physics and Astronomy, Uppsala University , Box 516, SE-75120 Uppsala, Sweden

17. Jet Propulsion Laboratory, California Institute of Technology , M/S 168-200, 4800 Oak Grove Drive, Pasadena, CA 91109, USA

18. CNR–IFN Padova , Via Trasea 7, I-35131 Padova, Italy

19. Aix Marseille Univ, CNRS, CNES, LAM , Marseille, France

20. German Aerospace Center (DLR), Institute of Optical Sensor Systems , Rutherfordstr. 2, D-12489 Berlin, Germany

21. Space Research and Planetology Division, Physikalisches Inst., University of Bern , Sidlerstrasse 5, CH-3012 Bern, Switzerland

22. Istituto di Astrofisica e Planetologia Spaziali – IAPS/INAF , Via del Fosso del Cavaliere 100, I-00133 Roma, Italy

23. Space and Planetary Science Center, and Department of Earth Sciences , Khalifa University, PO Box 127788 Abu Dhabi, UAE

24. Department of Physics and Astronomy, University of Padova , Vicolo Osservatorio 3, I-35122 Padova, Italy

25. INAF-Astronomical Observatory of Padova , Vic. Osservatorio 5, I-35122 Padova, Italy

Abstract

ABSTRACT Between 2014 December 31 and 2015 March 17, the OSIRIS cameras on Rosetta documented the growth of a $140\, \mathrm{\hbox{-}m}$ wide and $0.5\, \mathrm{\hbox{-}m}$ deep depression in the Hapi region on Comet 67P/Churyumov–Gerasimenko. This shallow pit is one of several that later formed elsewhere on the comet, all in smooth terrain that primarily is the result of airfall of coma particles. We have compiled observations of this region in Hapi by the microwave instrument MIRO on Rosetta, acquired during October and November 2014. We use thermophysical and radiative transfer models in order to reproduce the MIRO observations. This allows us to place constraints on the thermal inertia, diffusivity, chemical composition, stratification, extinction coefficients, and scattering properties of the surface material, and how they evolved during the months prior to pit formation. The results are placed in context through long-term comet nucleus evolution modelling. We propose that (1) MIRO observes signatures that are consistent with a solid-state greenhouse effect in airfall material; (2) CO2 ice is sufficiently close to the surface to have a measurable effect on MIRO antenna temperatures, and likely is responsible for the pit formation in Hapi observed by OSIRIS; (3) the pressure at the CO2 sublimation front is sufficiently strong to expel dust and water ice outwards, and to compress comet material inwards, thereby causing the near-surface compaction observed by CONSERT, SESAME, and groundbased radar, manifested as the ‘consolidated terrain’ texture observed by OSIRIS.

Funder

Jet Propulsion Laboratory

California Institute of Technology

National Aeronautics and Space Administration

MIRO

NASA

University of Padova

CSIC

European Space Agency

Instituto Nacional de Técnica Aeroespacial

Uppsala University

CNES

ASI

MEC

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pits on Jupiter-family Comets and the Age of Cometary Surfaces;The Planetary Science Journal;2023-11-01

2. Cliff collapse on Comet 67P/Churyumov–Gerasimenko – I. Aswan;Monthly Notices of the Royal Astronomical Society;2023-10-13

3. A quantitative description of comet 67P’s dust and gas production remains enigmatic;Monthly Notices of the Royal Astronomical Society;2023-06-13

4. Collisional heating of icy planetesimals – I. Catastrophic collisions;Monthly Notices of the Royal Astronomical Society;2023-03-10

5. Micrometre-sized ice particles for planetary science experiments – CoPhyLab cryogenic granular sample production and storage;RAS Techniques and Instruments;2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3