Predicting the broad-lines polarization emitted by supermassive binary black holes

Author:

Savić D.,Marin F.,Popović L. Č.

Abstract

Context. Some Type-1 active galactic nuclei (AGN) show extremely asymmetric Balmer lines with the broad peak redshifted or blueshifted by thousands of km s−1. These AGN may be good candidates for supermassive binary black holes (SMBBHs). The complex line shapes can be due to the complex kinematics of the two broad line regions (BLRs). Therefore other methods should be applied to confirm the SMBBHs. One of them is spectropolarimetry. Aims. We rely on numerical modeling of the polarimetry of binary black holes systems, since polarimetry is highly sensitive to geometry, in order to find the specific influence of supermassive binary black hole (SMBBH) geometry and dynamics on polarized parameters across the broad line profiles. We apply our method to SMBBHs in which both components are assumed to be AGN with distances at the subparsec scale. Methods. We used a Monte Carlo radiative transfer code that simulates the geometry, dynamics, and emission pattern of a binary system where two black holes are getting increasingly close. Each gravitational well is accompanied by its own BLR and the whole system is surrounded by an accretion flow from the distant torus. We examined the emission line deformation and predicted the associated polarization that could be observed. Results. We modeled scattering-induced broad line polarization for various BLR geometries with complex kinematics. We find that the presence of SMBBHs can produce complex polarization angle profiles φ and strongly affect the polarized and unpolarized line profiles. Depending on the phase of the SMBBH, the resulting double-peaked emission lines either show red or blue peak dominance, or both the peaks can have the same intensity. In some cases, the whole line profile appears as a single Gaussian line, hiding the true nature of the source. Conclusions. Our results suggest that future observation with the high resolution spectropolarimetry of optical broad emission lines could play an important role in detecting subparsec SMBBHs.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3