Galactic Archaeology with asteroseismic ages: Evidence for delayed gas infall in the formation of the Milky Way disc

Author:

Spitoni E.,Silva Aguirre V.,Matteucci F.,Calura F.,Grisoni V.

Abstract

Context. Precise stellar ages from asteroseismology have become available and can help to set stronger constraints on the evolution of the Galactic disc components. Recently, asteroseismology has confirmed a clear age difference in the solar annulus between two distinct sequences in the [α/Fe] versus [Fe/H] abundance ratios relation: the high-α and low-α stellar populations. Aims. We aim to reproduce these new data with chemical evolution models including different assumptions for the history and number of accretion events. Methods. We tested two different approaches: a revised version of the “two-infall” model where the high-α phase forms by a fast gas accretion episode and the low-α sequence follows later from a slower gas infall rate, and the parallel formation scenario where the two disc sequences form coevally and independently. Results. The revised two-infall model including uncertainties in age and metallicity is capable of reproducing: i) the [α/Fe] versus [Fe/H] abundance relation at different Galactic epochs, ii) the age−metallicity relation and the time evolution [α/Fe]; iii) the age distribution of the high-α and low-α stellar populations, iv) the metallicity distribution function. The parallel approach is not capable of properly reproducing the stellar age distribution, in particular at old ages. Conclusions. The best chemical evolution model is the revised two-infall one, where a consistent delay of ∼4.3 Gyr in the beginning of the second gas accretion episode is a crucial assumption to reproduce stellar abundances and ages.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference89 articles.

Cited by 128 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3