BSE versus StarTrack: Implementations of new wind, remnant-formation, and natal-kick schemes in NBODY7 and their astrophysical consequences

Author:

Banerjee S.ORCID,Belczynski K.,Fryer C. L.,Berczik P.,Hurley J. R.,Spurzem R.,Wang L.

Abstract

Context. As a result of their formation via massive single and binary stellar evolution, the masses of stellar-remnant black holes (BH) are subjects of great interest in this era of gravitational-wave detection from binary black hole (BBH) and binary neutron star merger events. Aims. In this work, we present new developments in the stellar-remnant formation and related schemes of the current N-body evolution program NBODY7. We demonstrate that the newly implemented stellar-wind and remnant-formation schemes in the stellar-evolutionary sector or BSE of the NBODY7 code, such as the “rapid” and the “delayed” supernova (SN) schemes along with an implementation of pulsational-pair-instability and pair-instability supernova (PPSN/PSN), now produce neutron star (NS) and BH masses that agree nearly perfectly, over large ranges of zero-age-main-sequence (ZAMS) mass and metallicity, with those from the widely recognised StarTrack population-synthesis program. We also demonstrate the new, recipe-based implementations of various widely debated mechanisms of natal kicks on NSs and BHs, such as “convection-asymmetry-driven”, “collapse-asymmetry-driven”, and “neutrino-emission-driven” kicks, in addition to a fully consistent implementation of the standard, fallback-dependent, momentum-conserving natal kick. Methods. All the above newly implemented schemes are also shared with the standalone versions of SSE and BSE. All these demonstrations are performed with both the updated standalone BSE and the updated NBODY7/BSE. Results. When convolved with stellar and primordial-binary populations as observed in young massive clusters, such remnant-formation and natal-kick mechanisms crucially determine the accumulated number, mass, and mass distribution of the BHs retained in young massive, open, and globular clusters (GCs); these BHs would eventually become available for long-term dynamical processing. Conclusions. Among other conclusions, we find that although the newer, delayed SN remnant formation model gives birth to the largest number (mass) of BHs, the older remnant-formation schemes cause the largest number (mass) of BHs to survive in clusters, when incorporating SN material fallback onto the BHs. The SN material fallback also causes the convection-asymmetry-driven SN kick to effectively retain similar numbers and masses of BHs in clusters as for the standard, momentum-conserving kick. The collapse-asymmetry-driven SN kick would cause nearly all BHs to be retained in clusters irrespective of their mass, remnant-formation model, and metallicity, whereas the inference of a large population of BHs in GCs would potentially rule out the neutrino-driven SN kick mechanism. Pre-SN mergers of massive primordial binaries would potentially cause BH masses to deviate from the theoretical, single-star ZAMS to mass-remnant mass relation unless a substantial of the total merging stellar mass of up to ≈40% is lost during a merger process. In particular, such mergers, at low metallicities, have the potential to produce low-spinning BHs within the PSN mass gap that can be retained in a stellar cluster and be available for subsequent dynamical interactions. As recent studies indicate, the new remnant-formation modelling reassures us that young massive and open clusters would potentially contribute to the dynamical BBH merger detection rate to a similar extent as their more massive GC counterparts.

Funder

Deutsche Forschungsgemeinschaft

Polish National Science Center

Los Alamos National Laboratory

Volkswagen Foundation

NAS of Ukraine

National Natural Science Foundation of China

Chinese Academy of Sciences

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3