The Gaia-ESO Survey: detection and characterisation of single-line spectroscopic binaries

Author:

Merle T.ORCID,Van der Swaelmen M.,Van Eck S.ORCID,Jorissen A.ORCID,Jackson R. J.,Traven G.,Zwitter T.,Pourbaix D.,Klutsch A.,Sacco G.,Blomme R.,Masseron T.,Gilmore G.,Randich S.,Badenes C.,Bayo A.,Bensby T.,Bergemann M.,Biazzo K.,Damiani F.,Feuillet D.,Frasca A.,Gonneau A.,Jeffries R. D.,Jofré P.,Morbidelli L.,Mowlavi N.,Pancino E.,Prisinzano L.

Abstract

Context. Multiple stellar systems play a fundamental role in the formation and evolution of stellar populations in galaxies. Recent and ongoing large ground-based multi-object spectroscopic surveys significantly increase the sample of spectroscopic binaries (SBs) allowing analyses of their statistical properties. Aims. We investigate the repeated spectral observations of the Gaia-ESO Survey internal data release 5 (GES iDR5) to identify and characterise SBs with one visible component (SB1s) in fields covering mainly the discs, the bulge, the CoRot fields, and some stellar clusters and associations. Methods. A statistical χ2-test is performed on spectra of the iDR5 subsample of approximately 43 500 stars characterised by at least two observations and a signal-to-noise ratio larger than three. In the GES iDR5, most stars have four observations generally split into two epochs. A careful estimation of the radial velocity (RV) uncertainties is performed. Our sample of RV variables is cleaned from contamination by pulsation- and/or convection-induced variables using Gaia DR2 parallaxes and photometry. Monte-Carlo simulations using the SB9 catalogue of spectroscopic orbits allow to estimate our detection efficiency and to correct the SB1 rate to evaluate the GES SB1 binary fraction and its relation to effective temperature and metallicity. Results. We find 641 (resp., 803) FGK SB1 candidates at the 5σ (resp., 3σ) level. The maximum RV differences range from 2.2 km s−1 at the 5σ confidence level (1.6 km s−1 at 3σ) to 133 km s−1 (in both cases). Among them a quarter of the primaries are giant stars and can be located as far as 10 kpc. The orbital-period distribution is estimated from the RV standard-deviation distribution and reveals that the detected SB1s probe binaries with log P[d] ⪅ 4. We show that SB1s with dwarf primaries tend to have shorter orbital periods than SB1s with giant primaries. This is consistent with binary interactions removing shorter period systems as the primary ascends the red giant branch. For two systems, tentative orbital solutions with periods of 4 and 6 d are provided. After correcting for detection efficiency, selection biases, and the present-day mass function, we estimate the global GES SB1 fraction to be in the range 7–14% with a typical uncertainty of 4%. A small increase of the SB1 frequency is observed from K- towards F-type stars, in agreement with previous studies. The GES SB1 frequency decreases with metallicity at a rate of (−9 ± 3)% dex−1 in the metallicity range −2.7 ≤ [Fe/H] ≤ +0.6. This anticorrelation is obtained with a confidence level higher than 93% on a homogeneous sample covering spectral types FGK and a large range of metallicities. When the present-day mass function is accounted for, this rate turns to (−4 ± 2)% dex−1 with a confidence level higher than 88%. In addition we provide the variation of the SB1 fraction with metallicity separately for F, G, and K spectral types, as well as for dwarf and giant primaries.

Funder

Fondation ULB

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Gaia-ESO Survey: Calibrating the lithium–age relation with open clusters and associations;Astronomy & Astrophysics;2024-05

2. Update of SB9 orbits using HERMES/Mercator radial velocities;Astronomy & Astrophysics;2024-04

3. MELCHIORS;Astronomy & Astrophysics;2024-01

4. Binary stars in the new millennium;Progress in Particle and Nuclear Physics;2024-01

5. Search for spectroscopic binaries using rotational velocities in five open clusters observed by ESO;Monthly Notices of the Royal Astronomical Society;2023-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3