Update of SB9 orbits using HERMES/Mercator radial velocities

Author:

Merle T.ORCID,Pourbaix D.,Jorissen A.ORCID,Siopis C.ORCID,Van Eck S.ORCID,Van Winckel H.

Abstract

Aims. By combining astrometric orbits (delivered in large numbers by the Gaίa mission) with spectroscopic orbits for systems with two observable spectra (SB2), it is possible to derive the masses of both stellar components. However, to get masses with a good accuracy requires accurate spectroscopic orbits, which is the primary aim of the present paper. A subsidiary aim is to discover SB2 systems hiding among known SB1 systems and even though this search may often prove unsuccessful, the acquired radial velocities may still be used to improve the existing spectroscopic orbits. Methods. New radial velocities for 58 binary systems from the Ninth Catalogue of Spectroscopic Binary Orbits (SB9), obtained using the high-resolution HERMES spectrograph installed on the 1.2 m Mercator telescope, were used to possibly identify hitherto undetected SB2 systems. For SB1 systems with inaccurate orbits, we used these new radial-velocity measurements to improve the orbital accuracy. Results. This study provides 51 orbits (41 SB1 and 10 SB2) that have been improved with respect to the solution listed in the SB9 catalogue, out of the 58 SB9 orbits studied, which belong to 56 stellar systems. Among them, there are five triple and four quadruple systems. Despite the high resolution of HERMES, the only system we detected as anew SB2 system is HIP 115142 A. The B component of the visual binary HIP 92726 has now been found to be a spectroscopic system as well, which makes HIP 92726 a newly discovered quadruple system (SB 1+SB 1). Moreover, the high resolution of HERMES has enabled us to better isolate the signature of the secondary component of HIP 12390, HIP 73182, and HIP 111170. Thus, we derived more accurate masses for them. Among the 30 SB also present in Gaia Data Release 3 (DR3), with periods shorter than the Gaia DR3 time span (~1000 d), only five had been flagged as binaries by DR3. Various DR3 selection criteria are responsible for this discrepancy.

Funder

Belgian Federal Science Policy Office

Fondation ULB

Belgian PRODEX

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3