Remote sensing of exoplanetary atmospheres with ground-based high-resolution near-infrared spectroscopy

Author:

Shulyak D.,Rengel M.,Reiners A.,Seemann U.,Yan F.

Abstract

Context. Thanks to the advances in modern instrumentation we have learned about many exoplanets that span a wide range of masses and composition. Studying their atmospheres provides insight into planetary origin, evolution, dynamics, and habitability. Present and future observing facilities will address these important topics in great detail by using more precise observations, high-resolution spectroscopy, and improved analysis methods. Aims. We investigate the feasibility of retrieving the vertical temperature distribution and molecular number densities from expected exoplanet spectra in the near-infrared. We use the test case of the CRIRES+ instrument at the Very Large Telescope which will operate in the near-infrared between 1 and 5 μm and resolving powers of R = 100 000 and R = 50 000. We also determine the optimal wavelength coverage and observational strategies for increasing accuracy in the retrievals. Methods. We used the optimal estimation approach to retrieve the atmospheric parameters from the simulated emission observations of the hot Jupiter HD 189733b. The radiative transfer forward model is calculated using a public version of the τ-REx software package. Results. Our simulations show that we can retrieve accurate temperature distribution in a very wide range of atmospheric pressures between 1 bar and 10−6 bar depending on the chosen spectral region. Retrieving molecular mixing ratios is very challenging, but a simultaneous observations in two separate infrared regions around 1.6 and 2.3 μm helps to obtain accurate estimates; the exoplanetary spectra must be of relatively high signal-to-noise ratio SN ≥ 10, while the temperature can already be derived accurately with the lowest value that we considered in this study (SN = 5). Conclusions. The results of our study suggest that high-resolution near-infrared spectroscopy is a powerful tool for studying exoplanet atmospheres because numerous lines of different molecules can be analyzed simultaneously. Instruments similar to CRIRES+ will provide data for detailed retrieval and will provide new important constraints on the atmospheric chemistry and physics.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3