Stellar populations of galaxies in the ALHAMBRA survey up to z ∼ 1

Author:

Díaz-García L. A.ORCID,Cenarro A. J.,López-Sanjuan C.,Peralta de Arriba L.,Ferreras I.,Cerviño M.,Márquez I.,Masegosa J.,del Olmo A.,Perea J.

Abstract

Aims. We perform a comprehensive study of the stellar population properties (formation epoch, age, metallicity, and extinction) of quiescent galaxies as a function of size and stellar mass to constrain the physical mechanism governing the stellar mass assembly and the likely evolutive scenarios that explain their growth in size. Methods. After selecting all the quiescent galaxies from the ALHAMBRA survey by the dust-corrected stellar mass–colour diagram, we built a shared sample of ∼850 quiescent galaxies with reliable measurements of sizes from the HST. This sample is complete in stellar mass and luminosity, I ≤ 23. The stellar population properties were retrieved using the fitting code for spectral energy distributions called MUlti-Filter FITting for stellar population diagnostics (MUFFIT) with various sets of composite stellar population models. Age, formation epoch, metallicity, and extinction were studied on the stellar mass–size plane as function of size through a Monte Carlo approach. This accounted for uncertainties and degeneracy effects amongst stellar population properties. Results. The stellar population properties of quiescent galaxies and their stellar mass and size since z ∼ 1 are correlated. At fixed stellar mass, the more compact the quiescent galaxy, the older and richer in metals it is (1 Gyr and 0.1 dex, respectively). In addition, more compact galaxies may present slight lower extinctions than their more extended counterparts at the same stellar mass (< 0.1 mag). By means of studying constant regions of stellar population properties across the stellar mass–size plane, we obtained empirical relations to constrain the physical mechanism that governs the stellar mass assembly of the form Mrcα, where α amounts to 0.50–0.55 ± 0.09. There are indications that support the idea that the velocity dispersion is tightly correlated with the stellar content of galaxies. The mechanisms driving the evolution of stellar populations can therefore be partly linked to the dynamical properties of galaxies, along with their gravitational potential.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3