Exploring galaxy properties of eCALIFA with contrastive learning

Author:

Martínez-Solaeche G.ORCID,García-Benito R.ORCID,González Delgado R. M.ORCID,Díaz-García L.,Sánchez S. F.,Conrado A. M.ORCID,Rodríguez-Martín J. E.

Abstract

Contrastive learning (CL) has emerged as a potent tool for building meaningful latent representations of galaxy properties across a broad spectrum of wavelengths, ranging from optical and infrared to radio frequencies. These latent representations facilitate a variety of downstream tasks, including galaxy classification, similarity searches in extensive datasets, and parameter estimation, which is why they are often referred to as foundation models for galaxies. In this study, we employ CL on the latest extended data release from the Calar Alto Legacy Integral Field Area (CALIFA) survey, which encompasses a total of 895 galaxies with enhanced spatial resolution that reaches the limits imposed by natural seeing (FWHMPSF ∼ 1.5). We demonstrate that CL can be effectively applied to Integral Field Unit (IFU) surveys, even with relatively small training sets, to construct meaningful embedding where galaxies are well separated based on their physical properties. We discover that the strongest correlations in the embedding space are observed with the equivalent width of Hα, galaxy morphology, stellar metallicity, luminosity-weighted age, stellar surface mass density, the [NII]/Hα ratio, and stellar mass, in descending order of correlation strength. Additionally, we illustrate the feasibility of unsupervised separation of galaxy populations along the star formation main sequence, successfully identifying the blue cloud and the red sequence in a two-cluster scenario, and the green valley population in a three-cluster scenario. Our findings indicate that galaxy luminosity profiles have minimal impact on the construction of the embedding space, suggesting that morphology and spectral features play a more significant role in distinguishing between galaxy populations. Moreover, we explore the use of CL for detecting variations in galaxy population distributions across different large-scale structures, including voids, clusters, and filaments and walls. Nonetheless, we acknowledge the limitations of the CL framework and our specific training set in detecting subtle differences in galaxy properties, such as the presence of an AGN or other minor scale variations that exceed the scope of primary parameters such as the stellar mass or morphology. Conclusively, we propose that CL can serve as an embedding function for the development of larger models capable of integrating data from multiple datasets, thereby advancing the construction of more comprehensive foundation models for galaxies.

Funder

Spanish MCIU

Publisher

EDP Sciences

Reference72 articles.

1. Assran M., Duval Q., Misra I., et al. 2023, ArXiv e-prints [arXiv:2301.08243]

2. Quantifying the Bimodal Color‐Magnitude Distribution of Galaxies

3. Baron D. 2019, ArXiv e-prints [arXiv:1904.07248]

4. Tracing kinematic (mis)alignments in CALIFA merging galaxies

5. Benitez N., Dupke R., Moles M., et al. 2014, ArXiv e-prints [arXiv:1403.5237]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3