Dynamics of cluster-forming hub-filament systems

Author:

Treviño-Morales S. P.ORCID,Fuente A.,Sánchez-Monge Á.ORCID,Kainulainen J.ORCID,Didelon P.ORCID,Suri S.,Schneider N.ORCID,Ballesteros-Paredes J.ORCID,Lee Y.-N.,Hennebelle P.,Pilleri P.,González-García M.,Kramer C.ORCID,García-Burillo S.,Luna A.ORCID,Goicoechea J. R.,Tremblin P.ORCID,Geen S.ORCID

Abstract

Context. High-mass stars and star clusters commonly form within hub-filament systems. Monoceros R2 (hereafter Mon R2), at a distance of 830 pc, harbors one of the closest of these systems, making it an excellent target for case studies. Aims. We investigate the morphology, stability and dynamical properties of the Mon R2 hub-filament system. Methods. We employed observations of the 13CO and C18O 1 →0 and 2 →1 lines obtained with the IRAM-30 m telescope. We also used H2 column density maps derived from Herschel dust emission observations. Results. We identified the filamentary network in Mon R2 with the DisPerSE algorithm and characterized the individual filaments as either main (converging into the hub) or secondary (converging to a main filament). The main filaments have line masses of 30–100 M pc−1 and show signs of fragmentation, while the secondary filaments have line masses of 12–60 M pc−1 and show fragmentation only sporadically. In the context of Ostriker’s hydrostatic filament model, the main filaments are thermally supercritical. If non-thermal motions are included, most of them are transcritical. Most of the secondary filaments are roughly transcritical regardless of whether non-thermal motions are included or not. From the morphology and kinematics of the main filaments, we estimate a mass accretion rate of 10−4–10−3 M yr−1 into the central hub. The secondary filaments accrete into the main filaments at a rate of 0.1–0.4 × 10−4 M yr−1. The main filaments extend into the central hub. Their velocity gradients increase toward the hub, suggesting acceleration of the gas. We estimate that with the observed infall velocity, the mass-doubling time of the hub is ~2.5 Myr, ten times longer than the free-fall time, suggesting a dynamically old region. These timescales are comparable with the chemical age of the HII region. Inside the hub, the main filaments show a ring- or a spiral-like morphology that exhibits rotation and infall motions. One possible explanation for the morphology is that gas is falling into the central cluster following a spiral-like pattern.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3