Kinematics and star formation of hub-filament systems in W49A

Author:

Zhang WenJunORCID,Zhou JianjunORCID,Esimbek JarkenORCID,Baan WillemORCID,He YuxinORCID,Tang XindiORCID,Li Dalei,Ji Weiguang,Wu GangORCID,Ma Yingxiu,Li Jiasheng,Zhou Dongdong,Tursun Kadirya,Komesh ToktarkhanORCID

Abstract

Aims. W49A is a prominent giant molecular cloud (GMC) that exhibits strong star formation activities, yet its structural and kinematic properties remain uncertain. Our study aims to investigate the large-scale structure and kinematics of W49A, and elucidate the role of filaments and hub-filament systems (HFSs) in its star formation activity. Methods. We utilized continuum data from Herschel and the James Clerk Maxwell Telescope (JCMT) as well as the molecular lines 12CO (3–2), 13CO (3–2), and C18O (3–2) to identify filaments and HFSs within W49A. Further analysis focused on the physical properties, kinematics, and mass transport within these structures. Additionally, recombination line emission from the H I/OH/Recombination (THOR) line survey was employed to trace the central H II region and ionized gas. Results. Our findings reveal that W49A comprises one blue-shifted (B-S) HFS and one red-shifted (R-S) HFS, each with multiple filaments and dense hubs. Notably, significant velocity gradients were detected along these filaments, indicative of material transport toward the hubs. High mass accretion rates along the filaments facilitate the formation of massive stars in the HFSs. Furthermore, the presence of V-shaped structures around clumps in position-velocity diagrams suggests ongoing gravitational collapse and local star formation within the filaments. Conclusions. Our results indicate that W49A consists of one R-S HFS and one B-S HFS, and that the material transport from filaments to the hub promotes the formation of massive stars in the hub. These findings underscore the significance of HFSs in shaping the star formation history of W49A.

Publisher

EDP Sciences

Reference73 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3