Massive stars in the young cluster VVV CL074

Author:

Martins F.,Chené A.-N.,Bouret J.-C.,Borissova J.,Groh J.,Ramírez Alegría S.,Minniti D.

Abstract

Context. The evolution of massive stars is not fully constrained. Studies of young massive clusters hosting various populations of massive stars can help refine our understanding of the life and fate of massive stars. Aims. In this context, our goal is to study the massive stellar content of the young massive cluster VVV CL074. Methods. We obtained K-band spectroscopy of the brightest cluster members in order to identify the massive star population. We also determined the stellar properties of the cluster’s massive stars to better quantify the evolutionary sequences linking different types of massive stars. We collected integral field spectroscopy of selected fields in the cluster VVV CL074 with SINFONI on the ESO/VLT. We performed a spectral classification based on the K-band spectra and comparison to infrared spectral atlases. We determined the stellar parameters of the massive stars from analysis with atmosphere models computed with the code CMFGEN. Results. We uncover a population of 25 early-type (OB and Wolf–Rayet) stars, 19 being newly discovered by our observations out of which 15 are likely cluster members. The cluster’s spectrophotometric distance is 10.2 ± 1.6 kpc, placing it close to the intersection of the galactic bar and the Norma arm, beyond the galactic center. This makes VVV CL074 one the farthest young massive clusters identified so far. Among the massive stars population, three objects are Wolf–Rayet stars, the remaining are O and B stars. From the Hertzsprung–Russell diagram we find that most stars have an age between 3 and 6 Myr according to the Geneva evolutionary tracks. WN8 and WC8-9 stars are the descendants of stars with initial masses between 40 and 60 M. The massive star population of VVV CL074 is very similar to that of the cluster DBS2003-179 and to a lesser extent to that of the Quintuplet cluster, indicating the same age. The central cluster of the Galaxy is ∼3 Myr older. From the comparison of the massive stars populations in these four clusters, one concludes that galactic stars with an initial mass in the range 40–60 M likely go through a WN8-9 phase.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3