Upper mass-loss limits and clumping in the intermediate and outer wind regions of OB stars

Author:

Rubio-Díez M. M.ORCID,Sundqvist J. O.,Najarro F.,Traficante A.,Puls J.,Calzoletti L.,Figer D.

Abstract

Context. Mass loss is a key parameter throughout the evolution of massive stars, and it determines the feedback with the surrounding interstellar medium. The presence of inhomogeinities in stellar winds (clumping) leads to severe discrepancies not only among different mass-loss rate diagnostics, but also between empirical estimates and theoretical predictions. Aims. We aim to probe the radial clumping stratification of OB stars in the intermediate and outer wind regions (r ≳ 2 R*; radial distance to the photosphere) to derive upper limits for mass-loss rates and to compare that to current mass-loss implementation. Our sample includes 13 B supergiants, which is the largest sample of such objects in which clumping has been analysed so far. Methods. Together with archival optical to radio observations, we obtained new far-infrared continuum observations for a sample of 25 OB stars. Our new data uniquely constrain the clumping properties of the intermediate wind region. By using density-squared diagnostics, we further derived the minimum radial stratification of the clumping factor through the stellar wind, fclmin (r), and the corresponding maximum mass-loss rate, max, normalising clumping factors to the outermost wind region (fclfar = 1). Results. We find that the clumping degree for r ≳ 2 R* decreases or stays constant with an increasing radius, regardless of the luminosity class or spectral type for 22 out of 25 sources in our sample. However, a dependence of the clumping degree on the luminosity class and spectral type at the intermediate region relative to the outer ones has been observed: O supergiants (OSGs) present, on average, a factor 2 larger clumping factors than B supergiants (BSGs). Interestingly, the clumping structure of roughly one-third of the OB supergiants in our sample is such that the maximum clumping occurs close to the wind base (r ≲ 2 R*), and then it decreases monotonically. This is in contrast to the more frequent case where the lowermost clumping increases towards a maximum and needs to be addressed by theoretical models. In addition, we find that the estimated max for BSGs is at least one order of magnitude (before finally decreasing) lower than the values usually adopted by stellar evolution models, whereas the upper observational limits and predictions of OSGs agree within errors. This implies large reductions of mass-loss rates applied in evolution models for BSGs, independently of the actual clumping properties of these winds. However, hydrodynamical models of clumping suggest absolute clumping factors in the outermost radio-emitting wind of the order of fclfar ≈ 4–9, assuming these values would imply a reduction in mass-loss rates included in stellar evolution models by a factor 2–3 for OSGs (above Teff ~ 26 500 K) and by factors 6–200 for BSGs below the so-called first bi-stability jump (below Teff ~ 22 000 K). While such reductions agree well with new theoretical mass-loss calculations for OSGs, our empirical findings call for a thorough re-investigation of BSG mass-loss rates and their associated effects on stellar evolution.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The IACOB project;Astronomy & Astrophysics;2024-07

2. Oxygen abundance of γ Vel from [O iii] 88 μm Herschel/PACS spectroscopy;Monthly Notices of the Royal Astronomical Society;2024-01-13

3. ALMA detection of CO rotational line emission in red supergiant stars of the massive young star cluster RSGC1;Astronomy & Astrophysics;2024-01

4. The post-quiescence properties of Cir X-1 at orbital phase around periastron observed by NuSTAR and NICER;Monthly Notices of the Royal Astronomical Society;2023-11-27

5. To clump or not to clump;Astronomy & Astrophysics;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3