Comparing simulated 26Al maps to gamma-ray measurements

Author:

Pleintinger Moritz M. M.ORCID,Siegert Thomas,Diehl Roland,Fujimoto YusukeORCID,Greiner Jochen,Krause Martin G. H.ORCID,Krumholz Mark R.ORCID

Abstract

Context. The diffuse gamma-ray emission of 26Al at 1.8 MeV reflects ongoing nucleosynthesis in the Milky Way and traces massive-star feedback in the interstellar medium due to its 1 Myr radioactive lifetime. The morphology and dynamics of the interstellar medium are investigated in astrophysics through 3D hydrodynamic simulations in fine detail as there are few suitable astronomical probes available. Aims. We aim to compare a galactic-scale hydrodynamic simulation of the Galaxy’s interstellar medium, including feedback and nucleosynthesis, with gamma-ray data on 26Al emission in the Milky Way, extracting constraints that are only weakly dependent on the particular realisation of the simulation or Galaxy structure. Methods. Due to constraints and biases in both the simulations and the gamma-ray observations, such comparisons are not straightforward. For a direct comparison, we performed maximum likelihood fits of both simulated sky maps and observation-based maximum entropy maps to measurements using INTEGRAL/SPI. In order to study general morphological properties, we compare the scale heights of 26Al emission produced by the simulation to INTEGRAL/SPI measurements. Results. The direct comparison shows that the simulation describes the observed inner Galaxy well, however it differs significantly from the observed full-sky emission morphology. Comparing the scale height distribution, we see similarities for small-scale height features and a mismatch at larger-scale heights. We attribute this to prominent foreground emission sites which are not captured by the simulation.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evolution of rotating massive stars with new hydrodynamic wind models;Astronomy & Astrophysics;2023-05

2. The Positron Puzzle;Astrophysics and Space Science;2023-04

3. Galactic population synthesis of radioactive nucleosynthesis ejecta;Astronomy & Astrophysics;2023-03-30

4. 26Al gamma rays from the Galaxy with INTEGRAL/SPI;Astronomy & Astrophysics;2023-03-30

5. Progress on nuclear reaction rates affecting the stellar production of 26Al;Journal of Physics G: Nuclear and Particle Physics;2023-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3