Galactic population synthesis of radioactive nucleosynthesis ejecta

Author:

Siegert ThomasORCID,Pleintinger Moritz M. M.,Diehl RolandORCID,Krause Martin G. H.ORCID,Greiner Jochen,Weinberger Christoph

Abstract

Diffuse γ-ray line emission traces freshly produced radioisotopes in the interstellar gas, providing a unique perspective on the entire Galactic cycle of matter from nucleosynthesis in massive stars to their ejection and mixing in the interstellar medium (ISM). We aim to construct a model of nucleosynthesis ejecta on a galactic scale that is specifically tailored to complement the physically most important and empirically accessible features of γ-ray measurements in the MeV range, in particular for decay γ rays such as 26Al, 60Fe, or 44Ti. Based on properties of massive star groups, we developed a Population SYnthesis COde (PSYCO), which can instantiate galaxy models quickly and based on many different parameter configurations, such as the star formation rate (SFR), density profiles, or stellar evolution models. As a result, we obtain model maps of nucleosynthesis ejecta in the Galaxy which incorporate the population synthesis calculations of individual massive star groups. Based on a variety of stellar evolution models, supernova (SN) explodabilities, and density distributions, we find that the measured 26Al distribution from INTEGRAL/SPI can be explained by a Galaxy-wide population synthesis model with a SFR of 4–8 M yr−1 and a spiral-arm-dominated density profile with a scale height of at least 700 pc. Our model requires that most massive stars indeed undergo a SN explosion. This corresponds to a SN rate in the Milky Way of 1.8–2.8 per century, with quasi-persistent 26Al and 60Fe masses of 1.2–2.4 M and 1–6 M, respectively. Comparing the simulated morphologies to SPI data suggests that a frequent merging of superbubbles may take place in the Galaxy, and that an unknown yet strong foreground emission at 1.8 MeV could be present.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 2D chemical evolution models;Astronomy & Astrophysics;2023-12

2. 26Al gamma rays from the Galaxy with INTEGRAL/SPI;Astronomy & Astrophysics;2023-03-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3