Chemical abundances of 1111 FGK stars from the HARPS GTO planet search program

Author:

Delgado Mena E.ORCID,Adibekyan V.ORCID,Santos N. C.,Tsantaki M.,González Hernández J. I.ORCID,Sousa S. G.ORCID,Bertrán de Lis S.

Abstract

Context. To understand the formation and composition of planetary systems, it is essential to have insights into the chemical composition of their host stars. In particular, C/O elemental ratios are useful for constraining the density and bulk composition of terrestrial planets. Aims. We study the carbon abundances with a twofold objective. On the one hand, we want to evaluate the behaviour of carbon in the context of Galactic chemical evolution. On the other hand, we focus on the possible dependence of carbon abundances on the presence of planets and on the impact of various factors (such as different oxygen lines) on the determination of C/O elemental ratios. Methods. We derived chemical abundances of carbon from two atomic lines for 757 FGK stars in the HARPS-GTO sample, observed with high-resolution (R ~ 115 000) and high-quality spectra. The abundances were derived using a standard Local Thermodynamic Equilibrium analysis with automatically measured Equivalent Widths injected into the code MOOG and a grid of Kurucz ATLAS9 atmospheres. Oxygen abundances, derived using different lines, were taken from previous papers in this series and updated with the new stellar parameters. Results. We find that thick- and thin-disk stars are chemically disjunct for [C/Fe] across the full metallicity range that they have in common. Moreover, the population of high-α metal-rich stars also presents higher and clearly separated [C/Fe] ratios than thin-disk stars up to [Fe/H] ~ 0.2 dex. The [C/O] ratios present a general flat trend as a function of [O/H] but becomes negative at [O/H] ≳ 0dex. This trend is more clear when considering stars of similar metallicity. We find tentative evidence that stars with low-mass planets at lower metallicities have higher [C/Fe] ratios than stars without planets at the same metallicity, in the same way as has previously been found for α elements. Finally, the elemental C/O ratios for the vast majority of our stars are below 0.8 when using the oxygen line at 6158 Å, however, the forbidden oxygen line at 6300 Å provides systematically higher C/O values (going above 1.2 in a few cases) which also show a dependence on Teff. Moreover, by using different atmosphere models the C/O ratios can have a non-negligible difference for cool stars. Therefore, C/O ratios should be scaled to a common solar reference in order to correctly evaluate its behaviour. We find no significant differences in the distribution of C/O ratios for the different populations of planet hosts, except when comparing the stars without detected planets with the stars hosting Jupiter-type planets. However, we note that this difference might be caused by the different metallicity distributions of both populations. Conclusions. The derivation of homogeneous abundances from high-resolution spectra in samples that are modest in size is of great utility in constraining models of Galactic chemical evolution. The combination of these high-quality data with the long-term study of planetary presence in our sample is crucial for achieving an accurate understanding of the impact of stellar chemical composition on planetary formation mechanisms.

Funder

Fundação para a Ciência e a Tecnologia

FEDER through COMPETE2020

Spanish Ministry of Science and Innovation

MIUR Premiale Gaia-ESO survey

MIUR Premiale MiTiC: Mining the Cosmos

Fondazione Cassa di Risparmio di Firenze

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3