A kinematic study of central compact objects and their host supernova remnants

Author:

Mayer Martin G. F.ORCID,Becker WernerORCID

Abstract

Context. Central compact objects (CCOs) are a peculiar class of neutron stars, primarily encountered close to the center of young supernova remnants (SNRs) and characterized by thermal X-ray emission. Measurements of their proper motion and the expansion of the parent SNR are powerful tools for constraining explosion kinematics and the age of the system. Aims. Our goal is to perform a systematic study of the proper motion of all known CCOs with appropriate data available. From this, we hope to obtain constraints on the violent kick acting on the neutron star during the supernova explosion and infer the exact site of the explosion within the SNR. In addition, we aim to measure the expansion of three SNRs within our sample to obtain a direct handle on their kinematics and age. Methods. We analyze multiple archival Chandra data sets that consist of HRC and ACIS observations separated by temporal baselines of between 8 and 15 years. We achieve accurate source positions by fitting the imaging data with ray-tracing models of the Chandra point spread function. In order to correct for Chandra’s systematic astrometric uncertainties, we establish a reference frame using X-ray-detected sources in Gaia DR2 to provide accurate proper motion estimates for our target CCOs. Complementarily, we use our coaligned data sets to trace the expansion of three SNRs by directly measuring the spatial offset of various filaments and ejecta clumps between different epochs. Results. In total, we present new proper motion measurements for six CCOs. Within our sample, we do not find any indication of a hypervelocity object, and we determine comparatively tight upper limits (< 230 km s−1) on the transverse velocities of the CCOs in G330.2+1.0 and RX J1713.7−3946. We tentatively identify direct signatures of expansion for the SNRs G15.9+0.2 and Kes 79, at an estimated significance of 2.5σ and 2σ, respectively. Moreover, we confirm recently reported results, measuring the rapid expansion of G350.1−0.3 at almost 6000 km s−1, which places its maximal age at 600 − 700 years, making this object one of the youngest Galactic core-collapse SNRs. The observed expansion, combined with the proper motion of its CCO, which is much slower than previously predicted, implies the need for a very inhomogeneous circumstellar medium to explain the highly asymmetric appearance of the SNR. Finally, for the SNR RX J1713.7−3946, we combine previously published expansion measurements with our measurement of the CCO’s proper motion to obtain a constraining upper limit of 1700 years on the system’s age.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3