Young giants of intermediate mass

Author:

Lombardo LindaORCID,François PatrickORCID,Bonifacio PiercarloORCID,Caffau ElisabettaORCID,del Mar Matas Pinto Aroa,Charbonnel Corinne,Meynet Georges,Monaco LorenzoORCID,Cescutti GabrieleORCID,Mucciarelli AlessioORCID

Abstract

Context. In the search of a sample of metal-poor bright giants using Strömgren photometry, we serendipitously found a sample of 26 young (ages younger than 1 Gyr) metal-rich giants, some of which have high rotational velocities. Aims. We determined the chemical composition and rotational velocities of these stars in order to compare them with predictions from stellar evolution models. These stars where of spectral type A to B when on the main sequence, and we therefore wished to compare their abundance pattern to that of main-sequence A and B stars. Methods. Stellar masses were derived by comparison of the position of the stars in the colour-magnitude diagram with theoretical evolutionary tracks. These masses, together with Gaia photometry and parallaxes, were used to derive the stellar parameters. We used spectrum synthesis and model atmospheres to determine chemical abundances for 16 elements (C, N, O, Mg, Al, Ca, Fe, Sr, Y, Ba, La, Ce, Pr, Nd, Sm, and Eu) and rotational velocities. Results. The age-metallicity degeneracy can affect photometric metallicity calibrations. We identify 15 stars as likely binary stars. All stars are in prograde motion around the Galactic centre and belong to the thin-disc population. All but one of the sample stars present low [C/Fe] and high [N/Fe] ratios together with constant [(C+N+O)/Fe], suggesting that they have undergone CNO processing and first dredge-up. The observed rotational velocities are in line with theoretical predictions of the evolution of rotating stars.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3