Amplification and generation of turbulence during self-gravitating collapse

Author:

Hennebelle PatrickORCID

Abstract

Context. The formation of astrophysical structures, such as stars, compact objects, and also galaxies, entail an enhancement of densities by many orders of magnitude, which occurs through gravitational collapse. Aims. The role played by turbulence during this process is important. Turbulence generates density fluctuations, exerts a support against gravity, and possibly delivers angular momentum. How exactly turbulence behaves and is amplified during the collapse remains a matter of investigation and is the aim of the present paper. Methods. We carried out spherical averaging of the fluid equations, leading to 1D fluid equations that describe the evolution of mean quantities in particular the mean radial velocity as well as the mean radial and transverse turbulent velocities. These equations differ from the ones usually employed in the literature. We then performed a series of 3D numerical simulations of collapsing clouds for a wide range of thermal and turbulent supports with two polytropic equations of state, P ∝ ρΓ, with Γ = 1 and 1.25. For each 3D simulation, we performed a series of 1D simulations using the spherically averaged equations and the same initial conditions. Results. By performing a detailed comparison between 3D and 1D simulations, we can analyse the observed behaviours in great detail. Altogether, we find that the two approaches agree remarkably well, demonstrating the validity of the inferred equations; although, when turbulence is initially strong, major deviations from spherical geometry certainly preclude quantitative comparisons. The detailed comparisons lead us to an estimate of the turbulent dissipation parameter, which, when the turbulence is initially low, is found to be in good agreement with previous estimates of non self-gravitating supersonic turbulence. When turbulence is initially dynamically significant, larger values of the dissipation appear necessary for the 1D simulations to match the 3D ones. We find that the behaviour of turbulence depends on the cloud thermal support. If it is high, initial turbulence is amplified, as proposed earlier in the literature. However, if thermal support is low, turbulence is also generated by the development of local non-axisymmetric gravitational instabilities reaching values several times larger and in equipartition with gravitational energy. Conclusions. The inferred 1D equations offer an easy way to estimate the level reached by turbulence during gravitational collapse. Depending on the cloud thermal support, turbulence is either amplified or locally generated.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3