Star-forming environments in smoothed particle magnetohydrodynamics simulations II: re-simulating isolated clumps to determine equivalence of extracted clumps and parent simulations

Author:

Wurster James1ORCID,Rowan Connar12ORCID

Affiliation:

1. Scottish Universities Physics Alliance (SUPA), School of Physics and Astronomy, University of St. Andrews , North Haugh, St Andrews, Fife KY16 9SS , UK

2. Rudolf Peierls Centre for Theoretical Physics, Clarendon Laboratory , Parks Road, Oxford, OX1 3PU , UK

Abstract

ABSTRACT What is the numerical reproducibility of a stellar system (including its discs) when evolving only a subset of (partially-evolved) smoothed particle hydrodynamics (SPH) particles? To investigate this, we modelled the evolution of 29 star-forming clumps that were extracted from our previous simulations that investigated the formation and early evolution of low-mass star clusters. These clumps were evolved using a three-dimensional smoothed particle radiation magnetohydrodynamics code, where we included or excluded non-ideal magnetohydrodynamics to match the cluster simulation. While star formation proceeded as expected, we were unable to identically reproduce any of the systems present at the end of the cluster simulations. However, the final distributions of stellar mass, stellar system mass, disc mass, and disc radii were reproduced statistically; unfortunately, the distribution of average magnetic field strengths in the discs was not reproduced statistically, but this may be a result of our updated algorithms governing the evolution of the magnetic field. Therefore, given that our clumps yield stellar masses that are statistically similar to those in the original low-mass star clusters, we have demonstrated that we can statistically reproduce systems (aside from their magnetic field strength) by evolving a subset of SPH particles. Therefore, clumps such as these can be used as initial conditions to investigate the formation of isolated stars from less-contrived initial environments.

Funder

European Research Council

Horizon 2020

STFC

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3