Abstract
Context.As the importance of gravitational wave (GW) astrophysics increases rapidly, astronomers interested in GWs who are not experts in this field sometimes need to get a quick idea of what GW sources can be detected by certain detectors, and the accuracy of the measured parameters.Aims.The GW-Toolbox is a set of easy-to-use, flexible tools to simulate observations of the GW universe with different detectors, including ground-based interferometers (advanced LIGO, advanced VIRGO, KAGRA, Einstein Telescope, Cosmic Explorer, and also customised interferometers), space-borne interferometers (LISA and a customised design), and pulsar timing arrays mimicking the current working arrays (EPTA, PPTA, NANOGrav, IPTA) and future ones. We include a broad range of sources, such as mergers of stellar-mass compact objects, namely black holes, neutron stars, and black hole–neutron star binaries, supermassive black hole binary mergers and inspirals, Galactic double white dwarfs in ultra-compact orbit, extreme-mass-ratio inspirals, and stochastic GW backgrounds.Methods.We collected methods to simulate source populations and determine their detectability with various detectors. Our aim is to provide a comprehensive description of the methodology and functionality of the GW-Toolbox.Results.The GW-Toolbox produces results that are consistent with previous findings in the literature, and the tools can be accessed via a website interface or as a Python package. In the future, this package will be upgraded with more functions.
Funder
Dutch National Science Agenda, NWA Startimpuls
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献