The influence of gravity on granular impacts

Author:

Sunday CecilyORCID,Zhang YunORCID,Thuillet Florian,Tardivel Simon,Michel PatrickORCID,Murdoch Naomi

Abstract

Context. Impacts on small-body surfaces can occur naturally during cratering events or even strategically during carefully planned impact experiments, sampling maneuvers, and landing attempts. A proper interpretation of impact dynamics allows for a better understanding of the physical properties and the dynamical process of their regolith-covered surfaces and their general evolution. Aims. This work aims to first validate low-velocity, low-gravity impact simulations against experimental results, and then to discuss the observed collision behaviors in terms of a popular phenomenological collision model and a commonly referenced scaling relationship. Methods. We performed simulations using the soft-sphere discrete element method and two different codes, Chrono and pkdgrav. The simulations consist of a 10-cm-diameter spherical projectile impacting a bed of approximately 1-cm-diameter glass beads at collision velocities up to 1 m s−1. The impact simulations and experiments were conducted under terrestrial and low-gravity conditions, and the experimental results were used to calibrate the simulation parameters. Results. Both Chrono and pkdgrav succeed in replicating the terrestrial gravity impact experiments with high and comparable computational performance, allowing us to simulate impacts in other gravity conditions with confidence. Low-gravity impact simulations with Chrono show that the penetration depth and collision duration both increase when the gravity level decreases. However, the presented collision model and scaling relationship fail to describe the projectile’s behavior over the full range of impact cases. Conclusions. The impact simulations reveal that the penetration depth is a more reliable metric than the peak acceleration for assessing collision behavior in a coarse-grained material. This observation is important to consider when analyzing lander-regolith interactions using the accelerometer data from small-body missions. The objective of future work will be to determine the correct form and applicability of the cited collision models for different impact velocity and gravity regimes.

Funder

CALMIP

European Union Horizon 2020

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3