The first simultaneous X-ray broadband view of Mrk 110 with XMM-Newton and NuSTAR

Author:

Porquet D.ORCID,Reeves J. N.ORCID,Grosso N.ORCID,Braito V.ORCID,Lobban A.ORCID

Abstract

Context. Soft and hard X-ray excesses, compared to the continuum power-law shape between ∼2−10 keV, are common features observed in the spectra of active galactic nuclei (AGN) and are associated with the accretion disc-corona system around the supermassive black hole. However, the dominant process at work is still highly debated and has been proposed to be either relativistic reflection or Comptonisation. Such an investigation can be problematic for AGN that have significant intrinsic absorption, either cold or warm, which can severely distort the observed continuum. Therefore, AGN with no (or very weak) intrinsic absorption along the line-of-sight, called bare AGN, are the best targets for directly probing disc-corona systems. Aims. We aim to characterise the main X-ray spectral physical components from the bright bare broad-line Seyfert 1 AGN Mrk 110, as well as the physical process(es) at work in its disc-corona system viewed almost face-on. Methods. We perform the X-ray broadband spectral analysis thanks to two simultaneous XMM-Newton and NuSTAR observations performed on November 16−17, 2019, and April 5−6, 2020. We also use a deep NuSTAR observation obtained in January 2017 for the spectral analysis above 3 keV. Results. The broadband X-ray spectra of Mrk 110 are characterised by the presence of a prominent and absorption-free smooth soft X-ray excess, moderately broad O VII and Fe Kα emission lines, and a lack of a strong Compton hump. The continuum above ∼3 keV is very similar at both epochs, while some variability (stronger when brighter) is present for the soft X-ray excess. A combination of soft and hard Comptonisation by a warm and hot corona, respectively, plus mildly relativistic disc reflection reproduce the broadband X-ray continuum very well. The inferred warm corona temperature, kTwarm ∼ 0.3 keV, is similar to the values found in other sub-Eddington AGN, whereas the hot corona temperature, kThot ∼ 21−31 keV (depending mainly on the assumed hot corona geometry), is found to be in the lower range of the values measured in AGN.

Funder

CNES

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3