Unsupervised classification of CIGALE galaxy spectra

Author:

Dubois J.ORCID,Fraix-Burnet D.ORCID,Moultaka J.,Sharma P.ORCID,Burgarella D.

Abstract

Aims. Our study aims at providing deeper insight into the power and limitation of an unsupervised classification algorithm (called Fisher-EM) on spectra of galaxies. This algorithm uses a Gaussian mixture in a discriminative latent subspace. To this end, we investigate the capacity of this algorithm to segregate the physical parameters used to generate mock spectra and the influence of the noise on the classification. Methods. With the code CIGALE and different values for nine input parameters characterising the stellar population, we simulated a sample of 11 475 optical spectra of galaxies containing 496 monochromatic fluxes. The statistical model and the optimum number of clusters are given in Fisher-EM by the integrated completed likelihood (ICL) criterion. We repeated the analyses several times to assess the robustness of the results. Results. Two distinct classifications can be distinguished in the case of the noiseless spectra. The classification with more than 13 clusters disappears when noise is added, while the classification with 12 clusters is very robust against noise down to a signal-to-noise ratio (S/N) of 3. At S/N = 1, the optimum is 5 clusters, but the classification is still compatible with the previous classification. The distribution of the parameters used for the simulation shows an excellent discrimination between classes. A higher dispersion both in the spectra within each class and in the parameter distribution leads us to conclude that despite a much higher ICL, the classification with more than 13 clusters in the noiseless case is not physically relevant. Conclusions. This study yields two conclusions that are valid at least for the Fisher-EM algorithm. Firstly, the unsupervised classification of spectra of galaxies is both reliable and robust to noise. Secondly, such analyses are able to extract the useful physical information contained in the spectra and to build highly meaningful classifications. In an epoch of data-driven astrophysics, it is important to trust unsupervised machine-learning approaches that do not require training samples that are unavoidably biased.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3