2D unified atmosphere and wind simulations of O-type stars

Author:

Debnath D.ORCID,Sundqvist J. O.ORCID,Moens N.ORCID,Van der Sijpt C.ORCID,Verhamme O.ORCID,Poniatowski L. G.ORCID

Abstract

Context. Massive and luminous O-type star (O star) atmospheres with winds have been studied primarily using one-dimensional (1D), spherically symmetric, and stationary models. However, observations and theory have suggested that O star atmospheres are highly structured, turbulent, and time-dependent. As such, when making comparisons to observations, present-day 1D modeling tools require the introduction of ad hoc quantities such as photospheric macro- and microturbulence, wind clumping, and other relevant properties. Aims. We present a series of multi-dimensional, time-dependent, radiation-hydrodynamical (RHD) simulations for O stars that encapsulate the deeper sub-surface envelope (down to T ~ 450 kK), as well as the supersonic line-driven wind outflow in one unified approach. Our overarching aim is to develop a framework that is free from the ad-hoc prescriptions that plague present-day 1D models. Here, we start with an analysis of a small set of such multi-dimensional simulations and then compare them to atmospheric structures predicted by their 1D counterparts. Methods. We performed time-dependent, two-dimensional (2D) simulations of O star atmospheres with winds using a flux-limiting RHD finite volume modelling technique. Opacities are computed using a hybrid approach combining tabulated Rosseland means with calculations (based on the Sobolev approximation) of the enhanced line opacities expected for supersonic flows. The initial conditions and comparison models were derived using similar procedures as those applied in standard 1D stationary model atmosphere with wind codes. Results. Structure starts appearing in our simulations just below the iron-opacity peak at ~200 kK. Local pockets of gas with radiative accelerations that exceed gravity then shoot up from these deep layers into the upper atmosphere, where they interact with the line-driven wind outflow initiated around or beyond the variable photosphere. This complex interplay creates large turbulent velocities in the photospheric layers of our simulations, on the order of ~30–100km s−1, with higher values for models with higher luminosity-to-mass ratios. This offers a generally good agreement with observations of large photospheric ‘macroturbulence’ in O stars. When compared to 1D models, the average structures in the 2D simulations display less envelope expansion and no sharp density-inversions, along with density and temperature profiles that are significantly less steep around the photosphere, and a strong anti-correlation between velocity and density in the supersonic wind. Although the wind initiation region is complex and highly variable in our simulations, our average mass-loss rates agree well with stationary wind models computed by means of full co-moving frame radiative transfer solutions. Conclusions. The different atmospheric structures found in 2D and 1D simulations are likely to affect the spectroscopic determination of fundamental stellar and wind parameters for O stars as well as the empirical derivation of their chemical abundance patterns. To qualitatively match the different density and temperature profiles seen in our multi-dimensional and 1D models, we need to add a modest amount of convective energy transport in the deep sub-surface layers and a large turbulent pressure around the photosphere to the 1D models.

Funder

European Research Council

FWO

KU Leuven

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. X-Shooting ULLYSES: Massive stars at low metallicity;Astronomy & Astrophysics;2024-08-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3