Abstract
In this paper, we present some specific chemical and magnetic order results obtained on bimetallic FeRh nanoparticles prepared under non-equilibrium conditions using mass-selected Low Energy Cluster Beam Deposition. Clusters around 7 nm incident diameter are in situ sandwiched between amorphous carbon films before transfer in air, with different surface coverage (from nearly isolated particles to percolating 2D films) in order to artificially increase diameters of the nanoparticles (NPs) by coalescence. On such FeRh@C samples, we observe different NPs morphologies and magnetic responses after UHV thermal treatments. By transmission electron microscopy (TEM), we show that after moderate annealing, nanoalloys evolved from a metastable structure towards the equilibrium CsCl-type (B2) chemically ordered phase with a more spherical shape. While from Superconducting Quantum Interference Device (SQUID) magnetometry measurements on 700 °C-annealed FeRh@C samples, we clearly evidence huge magnetization enhancement for such B2 nanoalloys with robust ferromagnetic (FM) signature even at very low temperature unlike their bulk counterparts.
Subject
Condensed Matter Physics,Instrumentation,Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献