Magnetic Elements for Neuromorphic Computing

Author:

Blachowicz TomaszORCID,Ehrmann AndreaORCID

Abstract

Neuromorphic computing is assumed to be significantly more energy efficient than, and at the same time expected to outperform, conventional computers in several applications, such as data classification, since it overcomes the so-called von Neumann bottleneck. Artificial synapses and neurons can be implemented into conventional hardware using new software, but also be created by diverse spintronic devices and other elements to completely avoid the disadvantages of recent hardware architecture. Here, we report on diverse approaches to implement neuromorphic functionalities in novel hardware using magnetic elements, published during the last years. Magnetic elements play an important role in neuromorphic computing. While other approaches, such as optical and conductive elements, are also under investigation in many groups, magnetic nanostructures and generally magnetic materials offer large advantages, especially in terms of data storage, but they can also unambiguously be used for data transport, e.g., by propagation of skyrmions or domain walls. This review underlines the possible applications of magnetic materials and nanostructures in neuromorphic systems.

Funder

Volkswagen Foundation

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference98 articles.

1. First Draft of a Report on the EDVAC;Neumann,1982

2. Understanding some simple processor-performance limits

3. Can programming be liberated from the von Neumann style?

4. A Survey of Neuromorphic Computing and Neural Networks in Hardware, 2017https://www.mdpi.com/1420-3049/21/9/1255/htm

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3