Abstract
Electromagnetic metamaterials (MMs) are artificial composites that exhibit exceptional physical characteristics. Their design, which relies on the retrieving of the effective medium parameters, is usually a very time-consuming process because of the high number of full-wave simulations involved in this task. To alleviate the related computational burden, we propose to use a Multi-fidelity Surrogate Modelling (MFSM) approach. Numerical results demonstrate that this methodology turns out to be promising for a quick evaluation of the scattering parameters from which the effective constitutive parameters of a MM are retrieved, as shown by two numerical examples.
Subject
Condensed Matter Physics,Instrumentation,Electronic, Optical and Magnetic Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献