Risk calculations for conformity assessment in practice

Author:

Allard Alexandre,Fischer Nicolas,Smith Ian,Harris Peter,Pendrill Leslie

Abstract

In 2012, the Joint Committee for Guides in Metrology (JCGM) published novel guidance on the consideration of measurement uncertainty for decision-making in conformity assessment (JCGM 106:2012). The two situations of making a wrong decision are considered: the risk of accepting a non-conforming item, denoted as the customer risk, and the risk of rejecting a conforming item, denoted as the producer risk. In 2017, the revision of ISO 17025 obliged calibration and testing laboratories to “document the decision rule employed, taking into account the level of risk (such as false accept and false reject and statistical assumptions) associated with the decision rule employed, and apply the decision rule” in the context of the decision made about the conformity of an item. However, JCGM 106:2012 can in some cases be perceived as quite difficult to apply for non-statisticians as it mainly relies on calculations involving probability distributions. In order to facilitate uptake of the methodology of JCGM 106:2012, EURAMET is funding the project EMPIR 17SIP05 “CASoft” (2018 – 2020), involving the National Measurement Institutes from France, Sweden and the UK. The objective is to make the methodology accessible to organisations involved in decision-making in conformity assessment: calibration and testing laboratories, industrialists and regulation authorities. Where the customer or producer are concerned, there are two kinds of risks arising from measurement uncertainty: specific risk which concerns the risk of an incorrect decision for a particular item and global risk which is the risk of an incorrect decision for any item chosen at random. Both kinds of risk may involve prior information, taken into account through a so-called prior probability distribution, introducing the concept of a Bayesian evaluation of the risks. If a calibration and testing laboratory performing the measurement has difficulty accessing prior information, it is likely that the industrialist in control of production processes will have some idea of the quality of the items produced. In this paper, the two problems of estimating the specific and global risks are addressed. The consideration of prior information is also discussed through a practical example as well as the use of software implementing the methodology, which will be made publically available at the end of the project.

Publisher

EDP Sciences

Reference4 articles.

1. BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and OIML, Evaluation of measurement data – The role of measurement uncertainty in conformity assessment, 2012, https://www.bipm.org/utils/common/documents/jcgm/JCGM_106_2012_E.pdf.

2. EMPIR 17SIP05 CASoft project (2018-2020), https://mathmet.org/projects/page-2/

3. ISO, IEC, General requirements for the competence of testing and calibration laboratories (ISO/IEC 17025:2017), 2017.

4. CEN/TC 261, Plastics sacks for household waste collection — Types, requirements and test methods (EN 13592:2017), 2017.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3