Validating the Space Weather Modeling Framework (SWMF) for applications in northern Europe

Author:

Kwagala Norah KaggwaORCID,Hesse Michael,Moretto ThereseORCID,Tenfjord PaulORCID,Norgren CeciliaORCID,Tóth Gabor,Gombosi TamasORCID,Kolstø Håkon M.ORCID,Spinnangr Susanne F.ORCID

Abstract

In this study we investigate the performance of the University of Michigan’s Space Weather Modeling Framework (SWMF) in prediction of ground magnetic perturbations (ΔB) and their rate of change with time (dB/dt), which is directly connected to geomagnetically induced currents (GICs). We use the SWMF set-up where the global magnetosphere provided by the Block Adaptive Tree Solar-wind Roe-type Upwind Scheme (BATS-R-US) MHD code, is coupled to the inner magnetosphere and the ionospheric electrodynamics. The validation is done for ΔB and dB/dt separately. The performance is evaluated via data-model comparison through a metrics-based approach. For ΔB, the normalized root mean square error (nRMS) and the correlation coefficient are used. For dB/dt, the probability of detection, the probability of false detection, the Heidke skill score, and the frequency bias are used for different dB/dt thresholds. The performance is evaluated for eleven ground magnetometer stations located between 59° and 85° magnetic latitude and spanning about five magnetic local times. Eight geomagnetic storms are studied. Our results show that the SWMF predicts the northward component of the perturbations better at lower latitudes (59°–67°) than at higher latitudes (>67°), whereas for the eastward component, the model performs better at high latitudes. Generally, the SWMF performs well in the prediction of dB/dt for a 0.3 nT/s threshold, with a high probability of detection ≈0.8, low probability of false detection (<0.4), and Heidke skill score above zero. To a large extent the model tends to predict events as often as they are actually occurring in nature (frequency bias 1). With respect to the metrics measures, the dB/dt prediction performance generally decreases as the threshold is raised, except for the probability of false detection, which improves.

Funder

European Space Agency

Publisher

EDP Sciences

Subject

Space and Planetary Science,Atmospheric Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3