The Influence of Ionospheric Conductance on Magnetospheric Convection During the Southward IMF

Author:

Zhu Minghui1ORCID,Dai Lei1ORCID,Wang Chi1,Gonzalez Walter12ORCID,Samsonov Andrey3ORCID,Guo Xiaocheng1ORCID,Ren Yong1,Tang Binbin1ORCID,Xu Qiuyu4ORCID

Affiliation:

1. State Key Laboratory of Space Weather National Space Science Center Chinese Academy of Sciences Beijing People's Republic of China

2. National Institute for Space Research (INPE) São José dos Campos Brazil

3. Mullard Space Science Laboratory University College London Dorking UK

4. LATMOS/IPSL CNRS UVSQ Université Paris‐Saclay Sorbonne Université Guynacourt France

Abstract

AbstractMagnetospheric convection is a fundamental process in the coupling of the solar wind, magnetosphere, and ionosphere. Recent studies have shown that dayside magnetopause reconnection drives magnetospheric convection, progressing from the dayside to the nightside within approximately 10–20 min in response to southward turning of the interplanetary magnetic field. In this study, we use global magnetohydrodynamic (MHD) simulations to investigate the influence of ionospheric conductance on dayside‐driven convection. We conduct three simulation runs: two with normal ionospheric conductance and one with nearly infinite conductance. The temporal and spatial pattern of magnetospheric convection largely remain consistent across all three simulation runs. Comparing the results, we observe a reduction of 20% in magnetospheric convection and a 30% increase of ionospheric Region 1 field‐aligned current (FAC) and Pedersen current in the run with nearly infinite conductance, compared to the normal conductance model. The results indicate that ionospheric conductance does not affect the response time of enhanced magnetospheric convection to the solar wind. We suggest that the 10–20 min timescale for establishing magnetospheric convection corresponds to the anti‐sunward drag of reconnected magnetic field lines from the sub‐solar point to the flank magnetopause. In cases of larger ionospheric conductance, the ionosphere footprints of dragged field lines become more stationary, potentially resulting in larger Region 1 FAC and ionosphere Pedersen current. A larger Pedersen current is associated with stronger sunward J × B force in the ionosphere, which corresponds to a stronger anti‐sunward force in the magnetosphere, thereby reducing sunward convection of closed field lines.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3