Modelling solar irradiance from ground-based photometric observations

Author:

Chatzistergos TheodosiosORCID,Ermolli IlariaORCID,Giorgi FabrizioORCID,Krivova Natalie A.ORCID,Puiu Cosmin ConstantinORCID

Abstract

Total solar irradiance (TSI) has been monitored from space since 1978, i.e. for about four solar cycles. The measurements show a prominent variability in phase with the solar cycle, as well as fluctuations on timescales shorter than a few days. However, the measurements were done by multiple and usually relatively short-lived missions. The different absolute calibrations of the individual instruments and the unaccounted for instrumental trends make estimates of the possible long-term trend in the TSI highly uncertain. Furthermore, both the variability and the uncertainty are strongly wavelength-dependent. While the variability in the UV irradiance is clearly in-phase with the solar cycle, the phase of the variability in the visible range has been debated. In this paper, we aim at getting an insight into the long-term trend of TSI since 1996 and the phase of the solar irradiance variations in the visible part of the spectrum. We use independent ground-based full-disc photometric observations in Ca II K and continuum from the Rome and San Fernando observatories to compute the TSI since 1996. We follow the empirical San Fernando approach based on the photometric sum index. We find a weak declining trend in the TSI of $ {-7.8}_{-0.8}^{+4.9}\times 1{0}^{-3}$ Wm−2 y−1 between the 1996 and 2008 activity minima, while between 2008 and 2019 the reconstructed TSI shows no trend to a marginally decreasing (but statistically insignificant) trend of $ {-0.1}_{-0.02}^{+0.25}\times 1{0}^{-3}$ Wm−2 y−1. The reference TSI series used for the reconstruction does not significantly affect the determined trend. The variation in the blue continuum (409.2 nm) is rather flat, while the variation in the red continuum (607.1 nm) is marginally in anti-phase, although this result is extremely sensitive to the accurate assessment of the quiet Sun level in the images. These results provide further insights into the long-term variation of the TSI. The amplitude of the variations in the visible is below the uncertainties of the processing, which prevents an assessment of the phase of the variations.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Atmospheric Science

Reference80 articles.

1. Alterman BL, Kasper JC, Leamon RJ, McIntosh SW. 2020. Helium abundance heralds the onset of solar cycle 25. arXiv:2006.04669 [astro-ph, physics:physics]. http://adsabs.harvard.edu/abs/2020arXiv200604669A.

2. Solar irradiance variability: a six-year comparison between SORCE observations and the SATIRE model

3. A Fast Model for the Reconstruction of Spectral Solar Irradiance in the Near- and Mid-Ultraviolet

4. Comparison of TSI from SORCE TIM with SFO Ground-Based Photometry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3