Transition to a weaker Sun: Changes in the solar atmosphere during the decay of the Modern Maximum

Author:

Mursula K.ORCID,Pevtsov A. A.ORCID,Asikainen T.,Tähtinen I.ORCID,Yeates A. R.

Abstract

Context. The Sun experienced a period of unprecedented activity during the 20th century, now called the Modern Maximum (MM). The decay of the MM after its maximum in cycle 19 has changed the Sun, the heliosphere, and the planetary environments in many ways. However, studies disagree on whether this decay has proceeded synchronously in different solar parameters or not. Aims. One of the related key issues is if the relation between two long parameters of solar activity, the sunspot number and the solar 10.7 cm radio flux, has remained the same during this decay. A recent study argues that there is an inhomogeneity in the 10.7 cm radio flux in 1980, which leads to a step-like jump (“1980 jump”) in this relation. If true, this result would reduce the versatility of possible long-term studies of the Sun during the MM. Here we aim to show that the relation between sunspot number and 10.7 cm radio flux does indeed vary in time, not due to an inhomogeneous radio flux but due to physical changes in the solar atmosphere. Methods. We used radio flux measurements made in Japan at four different wavelengths, and studied their long-term relation with the sunspot number and the 10.7 cm radio flux during the decay of MM. We also used two other solar parameters, the MgII index and the number of solar active regions, in order to study the nature of the observed long-term changes in more detail. Results. We find that the 1980 jump is only the first of a series of 1–2-year “humps” that mainly occur during solar maxima. All five radio fluxes depict an increasing trend with respect to the sunspot number from the 1970s to 2010s. These results exclude the interpretation of the 1980 jump as an inhomogeneity in the 10.7 cm flux, and reestablish the 10.7 cm flux as a homogeneous measure of solar activity. The fluxes of the longer radio waves are found to increase with respect to the shorter waves, which suggests a long-term change in the solar radio spectrum. We also find that the MgII index of solar UV irradiance and the number of active regions also increased with respect to the sunspot number, further verifying the difference in the long-term evolution in chromospheric and photospheric parameters. Conclusions. Our results provide evidence for important structural changes in solar magnetic fields and the solar atmosphere during the decay of the MM, which have not been reliably documented so far. We also emphasize that the changing relation between the different (e.g., photospheric and chromospheric) solar parameters should be taken into account when using the sunspot number or any single parameter in long-term studies of solar activity.

Funder

Research Council of Finland

International Space Science Institute

United Kingdom STFC

Publisher

EDP Sciences

Reference83 articles.

1. Balasubramaniam K. S., & Pevtsov A. 2011, in Solar Physics and Space Weather Instrumentation IV, eds. Fineschi S., & Fennelly J., SPIE Conf. Ser., 8148, 814809

2. Correlation Between Sunspot Number and Ca ii K Emission Index

3. Physical Models for Solar Cycle Predictions

4. Long-term trends in solar activity. Variations of solar indices in the last 40 years

5. The DTM-2013 thermosphere model

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3