Abstract
In this paper, we consider stability for a hyperbolic-hyperbolic coupled system consisting of Euler-Bernoulli beam and wave equations, where the structural damping of the wave equation is taken into account. The coupling is actuated through boundary weak connection in the sense that after differentiation of the total energy for coupled system, only the term of the wave equation appears explicitly. We first show that the spectrum of the closed-loop system consists of three branches: one branch is basically along the real axis and accumulates to a finite point; the second branch is also along the real line; and the third branch distributes along two parabola likewise symmetric with the real axis. The asymptotic expressions of both eigenvalues and eigenfunctions are obtained by means of asymptotic analysis. With an estimation of the resolvent operator, the completeness of the root subspace is proved. The Riesz basis property and exponential stability of the system are then concluded. Finally, we show that the associated C0-semigroup is of Gevrey class, which shows that not only the stability but also regularity have been transmitted from regular wave subsystem to the whole system through this boundary connections.
Subject
Computational Mathematics,Control and Optimization,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献