Author:
Akil Mohammad,Issa Ibtissam,Wehbe Ali
Abstract
<p style='text-indent:20px;'>In this paper, we investigate the energy decay of hyperbolic systems of wave-wave, wave-Euler-Bernoulli beam and beam-beam types. The two equations are coupled through boundary connection with only one localized non-smooth fractional Kelvin-Voigt damping. First, we reformulate each system into an augmented model and using a general criteria of Arendt-Batty, we prove that our models are strongly stable. Next, by using frequency domain approach, combined with multiplier technique and some interpolation inequalities, we establish different types of polynomial energy decay rate which depends on the order of the fractional derivative and the type of the damped equation in the system.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Control and Optimization,General Medicine
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献