Abstract
We consider the typical one-dimensional strongly degenerate parabolic operator Pu = ut − (xαux)x with 0 < x < ℓ and α ∈ (0, 2), controlled either by a boundary control acting at x = ℓ, or by a locally distributed control. Our main goal is to study the dependence of the so-called controllability cost needed to drive an initial condition to rest with respect to the degeneracy parameter α. We prove that the control cost blows up with an explicit exponential rate, as eC/((2−α)2T), when α → 2− and/or T → 0+. Our analysis builds on earlier results and methods (based on functional analysis and complex analysis techniques) developed by several authors such as Fattorini-Russel, Seidman, Güichal, Tenenbaum-Tucsnak and Lissy for the classical heat equation. In particular, we use the moment method and related constructions of suitable biorthogonal families, as well as new fine properties of the Bessel functions Jν of large order ν (obtained by ordinary differential equations techniques).
Funder
Università degli Studi di Roma Tor Vergata
Istituto Nazionale di Alta Matematica "Francesco Severi"
Subject
Computational Mathematics,Control and Optimization,Control and Systems Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献