An ultrathin and flexible terahertz electromagnetically induced transparency-like metasurface based on asymmetric resonators

Author:

Nourinovin Shohreh,Park Sae June,Abbasi Qammer H.,Alomainy Akram

Abstract

Terahertz (THz) electromagnetically induced transparency-like (EIT-like) metasurfaces have been extensively explored and frequently used for sensing, switching, slow light, and enhanced nonlinear effects. Reducing radiation and non-radiation losses in EIT-like systems contributes to increased electromagnetic (EM) field confinement, higher transmission peak magnitude, and Q-factor. This can be accomplished by the use of proper dielectric properties and engineering novel designs. Therefore, we fabricated a THz EIT-like metasurface based on asymmetric metallic resonators on an ultra-thin and flexible dielectric substrate. Because the quadruple mode is stimulated in a closed loop, an anti-parallel surface current forms, producing a transparency window with a transmission peak magnitude of 0.8 at 1.96 THz. To control the growing trend of EIT-like resonance, the structure was designed with four asymmetry levels. The effect of the substrate on the resonance response was also explored, and we demonstrated experimentally how the ultra-thin substrate and the metasurface asymmetric novel pattern contributed to higher transmission and lower loss.

Publisher

EDP Sciences

Subject

Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3