Effect of Substrate Etching on Terahertz Metamaterial Resonances and Its Liquid Sensing Applications

Author:

Park Sae June,Cunningham JohnORCID

Abstract

We investigate the effect of substrate etching on terahertz frequency range metamaterials using finite-element method simulations. A blue shift was found in the metamaterial resonance with increasing substrate etch depth, caused by a decrease in the effective refractive index. The relative contribution of the substrate’s refractive index to the effective refractive index was obtained as a function of the etch depth, finding that the decay length of the electric field magnitude below the LC gap is larger for the etched metamaterials due to their lower effective refractive index. We suggest designs for a terahertz metamaterial liquid sensor utilizing substrate etching which shows a significant enhancement in sensitivity compared to unetched sensors using ethanol as an example analyte. The sensitivity of the liquid sensor was enhanced by up to ~6.7-fold, from 76.4 to 514.5 GHz/RIU, for an ethanol liquid layer with a thickness of 60 μm by the incorporation of a substrate etch depth of 30 µm. Since the region of space close to the metamaterial is the most sensitive, however, we find that for small liquid thicknesses, larger etch depths can act to decrease sensitivity, and provide quantitative estimates of this effect.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3