Terahertz Sensing Based on Floating Bilayer Metasurface with Toroidal Dipole Resonance Toward Ultra‐High Sensitivity

Author:

Liu Xiaoxuan1,Xiao Binggang1,Qin Jianyuan1ORCID

Affiliation:

1. Centre for Terahertz Research China Jiliang University Hangzhou 310018 China

Abstract

AbstractMetasurface structures have proven to be effective in enhancing terahertz sensing signals and can thus be used as sensors to improve terahertz detection sensitivity. However, the sensitivity is limited by the poor spatial overlap between the analytes and the local electric field of the metasurface. In this work, a novel design of a floating bilayer metasurface structure for terahertz sensing is proposed and investigated. This structure supports a sharp toroidal dipole resonance and can concentrate near‐field energy on the analyte and metal atoms rather than on the substrate surface by floating the metal atoms. Consequently, the sensitivity is significantly improved to as high as 362 GHz RIU−1; theoretically, this is approximately 2.6 times higher than that of the common metasurface. The ability of the floating bilayer metasurface to quantitatively detect chlorothalonil is experimentally demonstrated. The resonance peak shows a significant frequency shift of 7 GHz for a change of 0.0001 mg dL−1 in chlorothalonil concentration, reaching up to 86 GHz when the change in chlorothalonil concentration is 100 mg dL−1; this is approximately 6.6 times higher than that of the common metasurface. This work provides opportunities for metasurface to realize ultrasensitive sensing in the terahertz regime.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Provincial Universities of Zhejiang

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3