Silicon Die Transient Thermal Peak Prediction Approach

Author:

Oukaira Aziz,Benelhaouare Amrou Zyad,Amirkhani Dariush,Zbitou Jamal,Lakhssassi Ahmed

Abstract

It is well known that Field Programmable Gate Arrays (FPGA) are good platforms for implementing embedded systems because of their configurable nature. However, the temperature of FPGAs is becoming a serious concern. Improvements in manufacturing technology led to increased logic density in integrated circuits as well as higher clock frequencies. As logic density increases, so do power density, which in turn increases the temperature, FPGAs follow the same path. A prediction of the thermal state of the Altera Cyclone V System-on-Chip (SoC) is presented in this work. The prediction study employs a numerical technique called Finite Element Method (FEM), which is a discretization method to approximate the real solution of the Partial Differential Equation (PDE) for heat transfer around the board's critical sources. The DE1 5CSEMA5F31C6N board was simulated using the COMSOL Multiphysics® tool for predicting thermal peaks during 13 hours of normal operation. Using the NISA tool, we obtained very similar results to those previously obtained with a margin of error of 2 %. As a result, a Verilog code implementation that describes the same approach used by the last two simulation tools is uploaded to the FPGA to verify the results of these simulations. This paper provides a more accurate vision of the level of operating stability of our FPGA board, which are currently the most important source for prototyping and designing the world's largest systems.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thermal camera for System-in-Package (SiP) technology: Transient thermal analysis based on FPGA and Finite Element Method (FEM);AEU - International Journal of Electronics and Communications;2023-12

2. Analytical and Numerical Modeling of the Thermal Performance of 3D System-in-Package (SiP);2023 International Conference on Electrical, Computer and Energy Technologies (ICECET);2023-11-16

3. Finite Element Method for System-in-Package (SiP) Technology: Thermal Analysis Using Chip Cooling Laminate Chip (CCLC);2023 17th International Conference on Ubiquitous Information Management and Communication (IMCOM);2023-01-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3