Author:
Simon Jeyasheela Rakkini,Geetha K
Abstract
The Ethereum blockchain is an open-source, decentralized blockchain with functions triggered by smart contract and has voluminous real-time data for analysis using machine learning and deep learning algorithms. Ether is the cryptocurrency of the Ethereum blockchain. Ethereum virtual machine is used to run Turing complete scripts. The data set concerning a block in the Ethereum blockchain with a block number, timestamp, crypto address of the miner, and the block rewards for the miner are explored for K means clustering for clustering miners with a unique crypto address and their rewards. Linear regression and polynomial regression are used for the prediction of the next block reward to the miner. The Long ShortTerm Memory (LSTM) algorithm is used to exploit the Ether market data set for predicting the next ether price in the market. Every kind of price and volume for every four hours is taken for prediction. The root mean square error of 34.9% is obtained for linear regression, the silhouette score is 71% for K-means clustering of miners with same rewards, with the optimal number of clusters obtained by Gap statistic method.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献