Visualization with Prediction Scheme for Early DDoS Detection in Ethereum

Author:

Park Younghoon1ORCID,Kim Yejin1ORCID

Affiliation:

1. Division of Computer Science, Sookmyung Women’s University, Seoul 04310, Republic of Korea

Abstract

Blockchain technologies have gained widespread use in security-sensitive applications due to their robust data protection. However, as blockchains are increasingly integrated into critical data management systems, they have become attractive targets for attackers. Among the various attacks on blockchain systems, distributed denial of service (DDoS) attacks are one of the most significant and potentially devastating. These attacks render the systems incapable of processing transactions, causing the blockchain to come to a halt. To address the challenge of detecting DDoS attacks on blockchains, existing visualization schemes have been developed. However, these schemes often fail to provide early DDoS detection since they typically display only past and current system status. In this paper, we present a novel visualization scheme that not only portrays past and current values but also forecasts future expected system statuses. We achieve these future predictions by utilizing polynomial regression with blockchain data. Additionally, we offer an alternative DDoS detection method employing statistical analysis, specifically the coefficient of determination, to enhance accuracy. Through our experiments, we demonstrate that our proposed scheme excels at predicting future blockchain statuses and anticipating DDoS attacks with minimal error. Our work empowers system managers of blockchain-based applications to identify and mitigate DDoS attacks at an earlier stage.

Funder

Institute of Information & Communications Technology Planning & Evaluation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3