ViT VO - A Visual Odometry technique Using CNN-Transformer Hybrid Architecture

Author:

B Jayaraj P.,J Ebin,R Karthik,P N Pournami

Abstract

Localization is one of the main tasks involved in the operation of autonomous agents (e.g., vehicle, robot etc.). It allows them to be able to track their paths and properly detect and avoid obstacles. Visual Odometry (VO) is one of the techniques used for agent localization. VO involves estimating the motion of an agent using the images taken by cameras attached to it. Conventional VO algorithms require specific workarounds for challenges posed by the working environment and the captured sensor data. On the other hand, Deep Learning approaches have shown tremendous efficiency and accuracy in tasks that require high degree of adaptability and scalability. In this work, a novel deep learning model is proposed to perform VO tasks for space robotic applications. The model consists of an optical flow estimation module which abstracts away scene-specific details from the input video sequence and produces an intermediate representation. The CNN module which follows next learn relative poses from the optical flow estimates. The final module is a state-of-the-art Vision Transformer, which learn absolute pose from the relative pose learnt by the CNN module. The model is trained on the KITTI dataset and has obtained a promising accuracy of approximately 2%. It has outperformed the baseline model, MagicVO, in a few sequences in the dataset.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3