Leveraging Deep Learning for Visual Odometry Using Optical Flow

Author:

Pandey Tejas,Pena Dexmont,Byrne JonathanORCID,Moloney David

Abstract

In this paper, we study deep learning approaches for monocular visual odometry (VO). Deep learning solutions have shown to be effective in VO applications, replacing the need for highly engineered steps, such as feature extraction and outlier rejection in a traditional pipeline. We propose a new architecture combining ego-motion estimation and sequence-based learning using deep neural networks. We estimate camera motion from optical flow using Convolutional Neural Networks (CNNs) and model the motion dynamics using Recurrent Neural Networks (RNNs). The network outputs the relative 6-DOF camera poses for a sequence, and implicitly learns the absolute scale without the need for camera intrinsics. The entire trajectory is then integrated without any post-calibration. We evaluate the proposed method on the KITTI dataset and compare it with traditional and other deep learning approaches in the literature.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference43 articles.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid Visual Odometry Algorithm Using a Downward-Facing Monocular Camera;Applied Sciences;2024-09-02

2. Towards explainable artificial intelligence in deep vision-based odometry;Computers and Electrical Engineering;2024-04

3. Brain-Inspired Visual Odometry: Balancing Speed and Interpretability Through a System of Systems Approach;2023 International Conference on Computational Science and Computational Intelligence (CSCI);2023-12-13

4. XVO: Generalized Visual Odometry via Cross-Modal Self-Training;2023 IEEE/CVF International Conference on Computer Vision (ICCV);2023-10-01

5. Monocular Non-linear Photometric Transformation Visual Odometry Based on Direct Sparse Odometry;2023 35th Chinese Control and Decision Conference (CCDC);2023-05-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3