Harnessing HPC resources for CMS jobs using a Virtual Private Network

Author:

Tovar Benjamin,Bockelman Brian,Hildreth Michael,Lannon Kevin,Thain Douglas

Abstract

The processing needs for the High Luminosity (HL) upgrade for the LHC require the CMS collaboration to harness the computational power available on non-CMS resources, such as High-Performance Computing centers (HPCs). These sites often limit the external network connectivity of their computational nodes. In this paper we describe a strategy in which all network connections of CMS jobs inside a facility are routed to a single point of external network connectivity using a Virtual Private Network (VPN) server by creating virtual network interfaces in the computational nodes. We show that when the computational nodes and the host running the VPN server have the namespaces capability enabled, the setup can run entirely on user space with no other root permissions required. The VPN server host may be a privileged node inside the facility configured for outside network access, or an external service that the nodes are allowed to contact. When namespaces are not enabled at the client side, then the setup falls back to using a SOCKS server instead of virtual network interfaces. We demonstrate the strategy by executing CMS Monte Carlo production requests on opportunistic non-CMS resources at the University of Notre Dame. For these jobs, cvmfs support is tested via fusermount (cvmfsexec), and the native fuse module.

Publisher

EDP Sciences

Reference20 articles.

1. CMS-Collaboration, Projected performance of an upgraded CMS detector at the LHC and HL-LHC: Contribution to the snowmass process (2013), 1307.7135

2. Boccali T., CMS Software and O_ine preparation for future runs, in 19th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (2019)

3. Aguado-Sanchez C., Bloomer J., Buncic P., Franco L., Klemer S., Mato P., CVMFS a file system for the CernVM virtual appliance, in Proceedings of XII Advanced Computing and Analysis Techniques in Physics Research (2008)

4. ip-netns(8) Linux User’s Manual (2021)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3